[1] 魏发远,谢朝阳,孙昌璞,等. 长贮装备性能退化评估刍议[J]. 机械工程学报,2020,56(16):262-272. WEI Fayuan,XIE Chaoyang,SUN Changpu. Evaluation of performance degradation of long storage equipment[J]. Journal of Mechanical Engineering,2020,56(16):262-272.
[2] 朱朔,白瑞林,刘秦川. 基于果蝇优化算法-小波支持向量数据描述的滚动轴承性能退化评估[J].中国机械工程,2018,29(5):602-608. ZHU Shuo,BAI Ruilin,LIU Qinchuan. Performance degradation evaluation of rolling bearings based on fruit fly optimization algorithm and wavelet support vector data description[J]. China Mechanical Engineering,2018,29(5):602-608
[3] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104.
[4] 谢雨洁,肖友刚,王田天,等. 基于异常检测的轴承退化阶段识别方法[J].中南大学学报,2022,53(5):1740-1749. XIE Yujie,XIAO Yougang,WANG Tiantian. Bearing degradation stage identification method based on anomaly detection[J]. Journal of Central South University,2022,53(5):1740-1749
[5] 董绍江,裴雪武,汤宝平,等. 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法[J]. 机械工程学报,2021,57(15):105-115. DONG Shaojiang,PEI Xuewu,TANG Baoping. Method for identifying the service life status of rolling bearings based on FNER performance degradation index and IDRSN[J]. Journal of Mechanical Engineering,2021,57(15):105-115
[6] 黄海凤,高宏力,李丹,等. 滚动轴承早期性能退化评估技术研究[J]. 机械科学与技术,2017,36(11):1771-1777. HUANG Haifeng,GAO Hongli,LI Dan. Research on early performance degradation evaluation technology for rolling bearings[J]. Mechanical Science and Technology,2017,36(11):1771-1777.
[7] LI N,LEI Y,LIN J,et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics,2015,62(12):7762-7773.
[8] YAN R,LIU Y,GAO R X. Permutation entropy:A nonlinear statistical measure for status characterization of rotary machines[J]. Mechanical Systems and Signal Processing,2012,29(29):474-484.
[9] 王庆锋,李中,许述剑,等. 基于故障案例学习的设备健康评价方法研究[J]. 机械工程学报,2020,56(20):28-37. WANG Qingfeng,LI Zhong,XU Shujian,et al. Research on equipment health evaluation method based on fault case learning[J]. Journal of Mechanical Engineering,2020,56(20):28-37.
[10] KLAUSEN A,KHANG H,ROBBERSMYR K,et al. Sparse and flexible convex-hull representation for machine degradation modeling[J]. IEEE Transactions on Reliability,2022,72(1):1-10.
[11] AN D,CHOI J,KIM N H. Remaining useful life prediction of rolling element bearings using degradation feature based on amplitude decrease at specific frequencies[J]. Structural Health Monitoring,2017,72(5):1095-1109.
[12] LI W,QIN M,ZHU Z,et al. Health monitoring of rolling element bearing using a spectrum searching strategy[J]. Journal of Vibroengineering,2017,19(6):4231-4246.
[13] WANG L,PAN J,SHAO Y,et al. Two new kurtosis-based similarity evaluation indicators for grinding chatter diagnosis under non-stationary working conditions[J]. Measurement,2021,176(2):109215.
[14] GUO L,LEI Y,LI N,et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing,2018,292(292):142-150.
[15] 章立军,刘博,张彬,等. 基于时频图像融合的轴承性能退化特征提取[J]. 机械工程学报,2013,49(22):53-58. ZHANG Lijun,LIU Bo,ZHANG Bin. Feature extraction method of bearing performance degradation based on time-frequency image fusion[J]. Journal of Mechanical Engineering,2013,49(22):53-58.
[16] CHEN L,XU G,ZHANG S,et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks[J]. Journal of Manufacturing Systems,2020,54(54):1-11.
[17] CHEN D,QIN Y,WANG Y,et al. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction[J]. ISA Transactions,2020,114(114):44-56.
[18] LIM C,KIM S,SEO Y,et al. Feature extraction for bearing prognostics using weighted correlation of fault frequencies over cycles[J]. Structural Health Monitoring,2020,19(6):1808-1820.
[19] LEI Y,LI N,GUO L,et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104:799-834.
[20] MOCHAMMAD S,NOH Y,KANG Y. Bearing fault degradation modeling based on multitime windows fusion unsupervised health indicator[J]. IEEE Sensors Journal,2023,23(17):19623-19634.
[21] 王奉涛,陈旭涛,闫达文,等. 流形模糊C均值方法及其在滚动轴承性能退化评估中的应用[J]. 机械工程学报,2016,52(15):59-64. WANG Fengtao,CHEN Xutao,YAN Dawen. Fuzzy C-means using manifold learning and its application to rolling bearing performance degradation assessment[J]. Journal of Mechanical Engineering,2016,52(15):59-64.
[22] CHEN Z,ZHU H,FAN L,et al. Health indicator similarity analysis-based adaptive degradation trend detection for bearing time-to-failure prediction[J]. Electronics,2023,12(7):1569-1578.
[23] COCCONCELLI M,STROZZI M,CAVALAGLIO J,et al. Detectivity:A combination of Hjorth’s parameters for condition monitoring of ball bearings[J]. Mechanical Systems and Signal Processing,2022,164:108247.
[24] GUO W,LI X,WAN X. A novel approach to bearing prognostics based on impulse-driven measures,improved morphological filter and practical health indicator construction[J]. Reliability Engineering & System Safety,2023,238:109451.
[25] CHEN Z,GUO R,LIN Z,et al. A data-driven health monitoring method using multiobjective optimization and stacked autoencoder based health indicator[J]. IEEE Transactions on Industrial Informatics,2021,17(9):6379-6389.
[26] LI X,JIANG H,XIONG X,et al. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network[J]. Mechanism and Machine Theory,2019,133(133):229-249.
[27] CHEN Z,XIA T,ZHOU D,et al. A Health index construction framework for prognostics based on feature fusion and constrained optimization[J]. IEEE Transactions on Instrumentation and Measurement,2021,70(70):1-15.
[28] QIN Y,ZHOU J,CHEN D. Unsupervised health indicator construction by a novel degradation-trend-constrained variational autoencoder and its applications[J]. IEEE/ASME Transactions on Mechatronics,2021,27(3):1447-1456.
[29] YANG J,YIN S,CHANF Y,et al. An efficient method for monitoring degradation and predicting the remaining useful life of mechanical rotating components[J]. IEEE Transactions on Instrumentation and Measurement,2020,70:1-14.
[30] ZHOU H,HUANG X,GUANG W,et al. Construction of health indicators for condition monitoring of rotating machinery:A review of the research[J]. Expert Systems with Applications,2022,203:117297.
[31] WANG D,TSUI K,MIAO Q. Prognostics and health management:A review of vibration based bearing and gear health indicators[J]. IEEE Access,2018,6:665-676.
[32] QIU G,GU Y,CHEN J. Selective health indicator for bearings ensemble remaining useful life prediction with genetic algorithm and Weibull proportional hazards model[J]. Measurement,2022,150:107097.
[33] LIAO L. Discovering prognostic features using genetic programming in remaining useful life prediction[J]. IEEE Transactions on Industrial Electronics,2014,61(5):2464-2472.
[34] GUO L,LI N,JIA F,et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing,2017,240:98-109.
[35] XU F,HUANG Z,YANG F,et al. Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion[J]. Applied Soft Computing,2020,89(5):106119.
[36] PARK J,KIM S,CHOI J H,et al. Frequency energy shift method for bearing fault prognosis using microphone sensor[J]. Mechanical Systems and Signal Processing,2021,147:107068.
[37] YAN T,WANG D,XIA T,et al. A generic framework for degradation modeling based on fusion of spectrum amplitudes[J]. IEEE Transactions on Automation Science and Engineering,2020(99):1-12.
[38] YAN T,WANG D,XIA T,et al. Online piecewise convex-optimization interpretable weight learning for machine life cycle performance assessment[J]. IEEE Trans Neural Netw Learn Syst.,2022(6):1-13.
[39] YAN T,WANG D,ZHENG M,et al. Fisher’s discriminant ratio based health indicator for locating informative frequency bands for machine performance degradation assessment[J]. Mechanical Systems and Signal Processing,2022,162:108053.
[40] LIU K,GEBRAEEL N Z,SHI J. A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering,2013,10(3):652-664.
[41] WANG D,MIAO Q,ZHOU Q,et al. An intelligent prognostic system for gear performance degradation assessment and remaining useful life estimation[J]. Journal of Vibration and Acoustics,2015,137(2):1-12.
[42] MEEKER W Q,ESCOBAR L. Statistical methods for reliability data[J]. Technometrics,63(3):437-440.
[43] TSUI K L,NAN C,QIANG Z,et al. Prognostics and health management:A review on data driven approaches[J]. Mathematical Problems in Engineering,2015(6):1-17.
[44] SI X S,WANG W,HU C H,et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability,2012,61(1):50-67.
[45] MEEKER W,LUVALLE M J. An accelerated life test model based on reliability kinetics[J]. Technometrics,1995,37(2):133-46.
[46] YAN T,WANG D,XIA T,et al. New shapeness property and its convex optimization model for interpretable machine degradation modeling[J]. IEEE Transactions on Reliability,2022,72(2):703-715.
[47] 雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报,2019,55(16):1-6. LEI Yaguo,HAN Tianyu,WANG Biao,et al. XJTU-SY rolling element bearing accelerated life test datasets:a tutorial[J]. Journal of Mechanical Engineering,2019,55(16):1-6.
[48] KONG X,YANG J. Remaining useful life prediction of rolling bearings based on RMS-MAVE and dynamic exponential regression model[J]. IEEE Access,2019,7(7):169705-169714.
[49] KIM M,SONG C,LIU K. A generic health index approach for multisensor degradation modeling and sensor selection[J]. IEEE Transactions on Automation Science and Engineering,2019,16(3):1426-1437.
[50] YAN T,WANG D,HOU B,et al. Generic framework for integration of first prediction time detection with machine degradation modelling from frequency domain[J]. IEEE Transactions on Reliability,2021,71(4):1-13.
[51] LIU K,CHEHADE A,SONG C. Optimize the signal quality of the composite health index via data fusion for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering,2017,14(3):1504-1514.
[52] YAN T,WANG D,KONG J Z,et al. Definition of signal-to-noise ratio of health indicators and its analytic optimization for machine performance degradation assessment[J]. IEEE Transactions on Instrumentation and Measurement,2021,70(70):1-16.
[53] ANTONI J,BORGHESANI P. A statistical methodology for the design of condition indicators[J]. Mechanical Systems and Signal Processing,2019,114(114):290-327.
[54] ZENG M,YANG Y,ZHENG J,et al. Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing,2016,66-67:533-545.
[55] ZENG M,YANG Y,ZHENG J,et al. Maximum margin classification based on flexible convex hulls[J]. Neurocomputing,2015,149:957-965.
[56] YAN T,WANG Y,XIA T,et al. Sparse and flexible convex-hull representation for machine degradation modeling[J]. IEEE Transactions on Reliability,2022,72(1):1-10.
[57] YAN T,WANG D,XIA T,et al. Entropy-maximization oriented interpretable health indicators for locating informative fault frequencies for machine health monitoring[J]. Mechanical Systems and Signal Processing,2023,198:110461.
[58] ANTONI J. The infogram:Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing,2016,74(1):73-94.
[59] WANG D,PENG Z,XI L,The sum of weighted normalized square envelope:A unified framework for kurtosis,negative entropy,Gini index and smoothness index for machine health monitoring[J]. Mechanical Systems and Signal Processing,2020,140:106725.
[60] YAN T,WANG D,SUN S,et al. Novel sparse representation degradation modeling for locating informative frequency bands for Machine performance degradation assessment[J]. Mechanical Systems and Signal Processing,2022,179:109372.
相关知识
直播|基于模型数据融合的动力电池健康状况评估技术
退化系统健康状况评估算法
基于优化长短期记忆网络的锂电池健康评估
基于大数据的车辆健康状态评估模型构建方法与流程
基于生物有效性的蔬菜重金属健康风险精细化评估研究进展
从基因和表型研究,到营养健康的优化
锂离子电池安全状态评估研究进展
基于数据驱动的锂离子电池健康状态估计及剩余寿命预测研究.docx
体外消化模型研究进展及其在食品中的应用
基于运动疗法的心脏康复效果评估及个性化方案优化研究
网址: 基于谱幅融合广义健康指数的可解释装备退化评估优化模型研究进展 https://m.trfsz.com/newsview1614647.html