Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. DOI:10.1038/nature11550
[2] Pan J, Liu LH, Mou JW. Research progress of gut microbiota and human health[J]. Journal of Shandong Normal University: Natural Science Edition, 2021, 36(4): 337-365. (in Chinese)
潘杰, 刘来浩, 牟建伟. 肠道菌群与人类健康研究进展[J]. 山东师范大学学报(自然科学版), 2021, 36(4): 337-365. DOI:10.3969/j.issn.1001-4748.2021.04.002
Ding RX, Goh WR, Wu RN, Yue XQ, Luo X, Khine WWT, Wu JR, Lee YK. Revisit gut microbiota and its impact on human health and disease[J]. Journal of Food and Drug Analysis, 2019, 27(3): 623-631. DOI:10.1016/j.jfda.2018.12.012
[4]Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis[J]. Clinical Immunology: Orlando, Fla, 2017, 183: 213-224. DOI:10.1016/j.clim.2017.03.001
[5]Song Q, Wang Y, Huang L, Shen M, Yu Y, Yu Q, Chen Y, Xie J. Review of the relationships among polysaccharides, gut microbiota, and human health[J]. Food Research International: Ottawa, Ont, 2021, 140: 109858. DOI:10.1016/j.foodres.2020.109858
[6]Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review[J]. Carbohydrate Polymers, 2018, 183: 91-101. DOI:10.1016/j.carbpol.2017.12.009
[7]Lin S, Wang Z, Lam K, Zeng S, Tan B, Hu J. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites[J]. Food & Nutrition Research, 2019, 63: 1518.
[8] [9]Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity[J]. Translational Oncology, 2019, 12(6): 846-851. DOI:10.1016/j.tranon.2019.03.003
[10]Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host & Microbe, 2013, 14(2): 207-215.
[11]Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563. e16. DOI:10.1016/j.cell.2017.07.008
[12]Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells[J]. Cell Host & Microbe, 2018, 23(2): 203-214. e5.
[13] Guan JQ, Li BL, Jiao WS, Li HZ, Yue YX, Li N, Shi JL, Zhao L, Huo GC. Recent advances in understanding the role of probiotics in promoting intestinal development[J]. Food Science, 2020, 41(21): 278-285. (in Chinese)
关嘉琦, 李柏良, 焦雯姝, 李慧臻, 岳莹雪, 李娜, 史佳鹭, 赵莉, 霍贵成. 益生菌对促进肠道发育作用的研究进展[J]. 食品科学, 2020, 41(21): 278-285. DOI:10.7506/spkx1002-6630-20191015-132
Yue Y, Ye K, Lu J, Wang X, Zhang S, Liu L, Yang B, Nassar K, Xu X, Pang X, et al. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment[J]. Biomedicine & Pharmacotherapy, 2020, 127: 110159.
[15]Madempudi RS, Kalle AM. Antiproliferative effects of Bacillus coagulans unique IS2 in colon cancer cells[J]. Nutrition and Cancer, 2017, 69(7): 1062-1068. DOI:10.1080/01635581.2017.1359317
[16]Chen G, Xie M, Wan P, Chen D, Ye H, Chen L, Zeng X, Liu Z. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea[J]. Food Chemistry, 2018, 244: 331-339. DOI:10.1016/j.foodchem.2017.10.074
[17]Di T, Chen GJ, Sun Y, Ou SY, Zeng X, Ye H. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra[J]. Journal of Functional Foods, 2018, 40: 18-27. DOI:10.1016/j.jff.2017.10.040
[18]Hu JL, Nie SP, Min FF, Xie MY. Artificial simulated saliva, gastric and intestinal digestion of polysaccharide from the seeds of Plantago asiatica L.[J]. Carbohydrate Polymers, 2013, 92(2): 1143-1150. DOI:10.1016/j.carbpol.2012.10.072
[19]Yuan Y, Li C, Zheng Q, Wu J, Zhu K, Shen X, Cao J. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota)[J]. Food Hydrocolloids, 2019, 89: 735-741. DOI:10.1016/j.foodhyd.2018.11.040
[20]Ding Q, Nie S, Hu J, Zong X, Li Q, Xie M. In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum[J]. Food Hydrocolloids, 2017, 63: 646-655. DOI:10.1016/j.foodhyd.2016.10.018
[21] [22] Zhou ZY, Xu X, Zhou Y. Research progress on carbohydrate active enzymes of human microbiome[J]. West China Journal of Stomatology, 2019, 37(6): 666-670. (in Chinese)
周祉延, 徐欣, 周媛. 人体微生物碳水化合物活性酶的研究进展[J]. 华西口腔医学杂志, 2019, 37(6): 666-670.
White BA, Lamed R, Bayer EA, Flint HJ. Biomass utilization by gut microbiomes[J]. Annual Review of Microbiology, 2014, 68: 279-296. DOI:10.1146/annurev-micro-092412-155618
[24]Ping Q, Zheng M, Dai X, Li Y. Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: fatty acid biosynthesis metabolic pathway and CAZymes[J]. Water Research, 2020, 170: 115309. DOI:10.1016/j.watres.2019.115309
[25]Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial effect of intestinal fermentation of natural polysaccharides[J]. Nutrients, 2018, 10(8): 1055. DOI:10.3390/nu10081055
[26]El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nature Reviews Microbiology, 2013, 11(7): 497-504. DOI:10.1038/nrmicro3050
[27] Tang Y, Xie GZ. Research progress on interaction between polysaccharide and gut microbiota[J]. Mordern Agricultural Sciences and Techology, 2020(9): 225-227. (in Chinese)
唐圆, 谢果珍. 多糖与肠道菌群的相互作用研究进展[J]. 现代农业科技, 2020(9): 225-227. DOI:10.3969/j.issn.1007-5739.2020.09.135
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. PNAS, 2010, 107(33): 14691-14696. DOI:10.1073/pnas.1005963107
[29]Han G, Zhang W, Wu Z, Wang H, Hui A, Meng L, Cheng P, Xian Z, He Y, Li H, et al. Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra[J]. Journal of Functional Foods, 2018, 50: 147-157. DOI:10.1016/j.jff.2018.09.035
[30]Zhao R, Cheng N, Nakata PA, Zhao L, Hu Q. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice[J]. Food Research International: Ottawa, Ont, 2019, 123: 383-392. DOI:10.1016/j.foodres.2019.04.070
[31]Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides[J]. Biotechnology Advances, 2013, 31(2): 318-337. DOI:10.1016/j.biotechadv.2012.12.009
[32]Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, Gänzle MG. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs[J]. FEMS Microbiology Ecology, 2011, 75(3): 402-413. DOI:10.1111/j.1574-6941.2010.01017.x
[33]Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg JL. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations[J]. Cell, 2010, 141(7): 1241-1252. DOI:10.1016/j.cell.2010.05.005
[34]Dodd D, Mackie RI, Cann IK. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes[J]. Molecular Microbiology, 2011, 79(2): 292-304. DOI:10.1111/j.1365-2958.2010.07473.x
[35] [36]Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review[J]. Gerontology, 2018, 64(6): 513-520. DOI:10.1159/000490615
[37]Shang Q, Jiang H, Cai C, Hao J, Li G, Yu G. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: an overview[J]. Carbohydrate Polymers, 2018, 179: 173-185. DOI:10.1016/j.carbpol.2017.09.059
[38]Cui L, Guan X, Ding W, Luo Y, Wang W, Bu W, Song J, Tan X, Sun E, Ning Q, et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota[J]. International Journal of Biological Macromolecules, 2021, 166: 1035-1045. DOI:10.1016/j.ijbiomac.2020.10.259
[39]Tao JH, Duan JA, Jiang S, Feng NN, Qiu WQ, Ling Y. Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats by modulating the intestinal microbiota community[J]. Oncotarget, 2017, 8(46): 80790-80803. DOI:10.18632/oncotarget.20477
[40]Yuan Y, Zhou J, Zheng Y, Xu Z, Li Y, Zhou S, Zhang C. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice[J]. Biomedicine & Pharmacotherapy, 2020, 127: 110182.
[41]Li Y, Lu X, Li X, Guo X, Sheng Y, Li Y, Xu G, Han X, An L, Du P. Effects of Agaricus blazei Murrill. polysaccharides on hyperlipidemic rats by regulation of intestinal microflora[J]. Food Science & Nutrition, 2020, 8(6): 2758-2772.
[42]Cao Y, Zou L, Li W, Song Y, Zhao G, Hu Y. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota[J]. International Journal of Biological Macromolecules, 2020, 163: 55-65. DOI:10.1016/j.ijbiomac.2020.06.241
[43]Ji X, Hou C, Gao Y, Xue Y, Yan Y, Guo X. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model[J]. Food & Function, 2020, 11(1): 163-173.
[44]Li Y, Wang S, Sun Y, Xu W, Zheng H, Wang Y, Tang Y, Gao X, Song C, Long Y, et al. Apple polysaccharide protects ICR mice against colitis associated colorectal cancer through the regulation of microbial dysbiosis[J]. Carbohydrate Polymers, 2020, 230: 115726. DOI:10.1016/j.carbpol.2019.115726
[45]Guo M, Li Z. Polysaccharides isolated from Nostoc commune Vaucher inhibit colitis-associated colon tumorigenesis in mice and modulate gut microbiota[J]. Food & Function, 2019, 10(10): 6873-6881.
[46]Li S, Qi Y, Chen L, Qu D, Li Z, Gao K, Chen J, Sun Y. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea[J]. International Journal of Biological Macromolecules, 2019, 124: 931-937. DOI:10.1016/j.ijbiomac.2018.11.271
[47]Bie N, Duan S, Meng M, Guo M, Wang C. Regulatory effect of non-starch polysaccharides from purple sweet potato on intestinal microbiota of mice with antibiotic-associated diarrhea[J]. Food & Function, 2021, 12(12): 5563-5575.
[48]Gao LL, Ma JM, Fan YN, Zhang YN, Ge R, Tao XJ, Zhang MW, Gao QH, Yang JJ. Lycium barbarum polysaccharide combined with aerobic exercise ameliorated nonalcoholic fatty liver disease through restoring gut microbiota, intestinal barrier and inhibiting hepatic inflammation[J]. International Journal of Biological Macromolecules, 2021, 183: 1379-1392. DOI:10.1016/j.ijbiomac.2021.05.066
[49]Jiang S, Ma Y, Li Y, Liu R, Zeng M. Mediation of the microbiome-gut axis by oyster (Crassostrea gigas) polysaccharides: apossible protective role in alcoholic liver injury[J]. International Journal of Biological Macromolecules, 2021, 182: 968-976. DOI:10.1016/j.ijbiomac.2021.04.050
[50]Li K, Zhuo C, Teng C, Yu S, Wang X, Hu Y, Ren G, Yu M, Qu J. Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice[J]. International Journal of Biological Macromolecules, 2016, 93(Part A): 904-912.
[51] Zhao H, Chen C, Zhao Y, Tang WW, Gao Q, Kong LZ, Yu DJ, Zhang Y. Effect of polysaccharides from plantaginis semen on renal injury and gut microbiota in rats with membranous nephropathy[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021(22): 92-99. (in Chinese)
赵宏, 陈晨, 赵岩, 汤威威, 高琪, 孔令洲, 于登君, 张宇. 车前子多糖对膜性肾病大鼠肾损伤和肠道菌群的影响[J]. 中国实验方剂学杂志, 2021(22): 92-99.
Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease[J]. Gut Microbes, 2017, 8(3): 238-252. DOI:10.1080/19490976.2017.1290757
[54]Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63(8): 1275-1283. DOI:10.1136/gutjnl-2013-304833
[55]Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases[J]. Translational Research, 2017, 179: 38-48. DOI:10.1016/j.trsl.2016.06.002
[56]Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. The Scientific World Journal, 2008, 105(43): 16731-16736.
[57]Satish Kumar CS, Kondal Reddy K, Reddy AG, Vinoth A, Ch SR, Boobalan G, Rao GS. Protective effect of Lactobacillus plantarum 21, a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats[J]. International Immunopharmacology, 2015, 25(2): 504-510. DOI:10.1016/j.intimp.2015.02.026
[58] Chen GW, Qiu CH, Tian LM, Bai WB. Recent progress in food-derived natural polysaccharide intervention in inflammatory bowel disease[J]. Food Science, 2019, 40(13): 281-287. (in Chinese)
陈国伟, 邱春红, 田灵敏, 白卫滨. 食源性天然产物中多糖干预炎症性肠病的研究进展[J]. 食品科学, 2019, 40(13): 281-287. DOI:10.7506/spkx1002-6630-20180619-371
Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, Gálvez J, Baldomà L. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli nissle 1917 in DSS-experimental colitis in mice[J]. Frontiers in Microbiology, 2017, 8: 1274. DOI:10.3389/fmicb.2017.01274
[60] Zhou ZJ, Ji Y, Li JC, Song YF, Ren T. Research progress of mechanism of action of intestinal florain type 2 diabetes mellitus and regulation effect of traditional Chinese medicine[J]. Medical Recapitulate, 2021, 27(16): 3237-3243. (in Chinese)
周子钧, 纪越, 李俊辰, 宋逸飞, 任桐. 肠道菌群在2型糖尿病中的作用机制及中药的调控作用[J]. 医学综述, 2021, 27(16): 3237-3243. DOI:10.3969/j.issn.1006-2084.2021.16.022
Gudi R, Perez N, Johnson BM, Sofi MH, Brown R, Quan S, Karumuthil-Melethil S, Vasu C. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes[J]. Immunology, 2019, 157(1): 70-85. DOI:10.1111/imm.13048
[63]Zhou W, Chen G, Chen D, Ye H, Zeng X. The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota[J]. Journal of Functional Foods, 2020, 75: 104222. DOI:10.1016/j.jff.2020.104222
[64]Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, Amirmozafari N. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals[J]. Microbial Pathogenesis, 2017, 111: 362-369. DOI:10.1016/j.micpath.2017.08.038
[65] Yang MC, Yuan MX, Lu W, Bao YH, Chai YY. In vitro digestion properties of Polygonatum sibiricum polysaccharide and its regulatory action on the gut microbiota in T2DM mice[J]. Modern Food Science & Technology, 2021, 37(8): 14-21. (in Chinese)
杨明琛, 袁梦欣, 陆维, 包怡红, 柴洋洋. 黄精多糖体外消化特性及对Ⅱ型糖尿病小鼠肠道菌群的调节作用[J]. 现代食品科技, 2021, 37(8): 14-21.
Bernini LJ, Simão AN, Alfieri DF, Lozovoy MA, Mari NL, De Souza CH, Dichi I, Costa GN. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: arandomized trial. Effects of probiotics on metabolic syndrome[J]. Nutrition: Burbank, Los Angeles County, Calif, 2016, 32(6): 716-719. DOI:10.1016/j.nut.2015.11.001
[67]Alessandri G, Van Sinderen D, Ventura M. The genus Bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota[J]. Computational and Structural Biotechnology Journal, 2021, 19: 1472-1487. DOI:10.1016/j.csbj.2021.03.006
[68]Guo Z, Hu B, Wang H, Kong L, Han H, Li K, Sun S, Lei Z, Zhang Z, Shimizu K. Supplementation with nanobubble water alleviates obesity-associated markers through modulation of gut microbiota in high-fat diet fed mice[J]. Journal of Functional Foods, 2020, 67: 103820. DOI:10.1016/j.jff.2020.103820
[69] Li QC, Xiao MF, Liu B, Chen HM, Zeng F. Research progress in the regulation of lipid metabolism by polysaccharides from edible and medicinal fungi through intestinal flora[J]. Science and Technology of Food Industry, 2021. (in Chinese)
李泉岑, 肖嵋方, 刘斌, 陈海明, 曾峰. 食药用菌多糖经由肠道菌群调节脂质代谢的研究进展[J]. 食品工业科技, 2021. DOI:10.13386/j.issn1002-0306.2021080196
Sun Z, Ai J. Research progress on the relationship between intestinal microflora dysregulation and colorectal cancer[J]. Modern Digestion & Intervention, 2021, 26(4): 530-533. (in Chinese)
孙中, 艾江. 肠道菌群失调与结直肠癌关系的研究进展[J]. 现代消化及介入诊疗, 2021, 26(4): 530-533. DOI:10.3969/j.issn.1672-2159.2021.04.029
Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer[J]. Nature Medicine, 2019, 25(6): 968-976. DOI:10.1038/s41591-019-0458-7
[72]Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103): 120-123. DOI:10.1126/science.1224820
[73]Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis[J]. Mucosal Immunology, 2017, 10(2): 421-433. DOI:10.1038/mi.2016.53
[74]Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health[J]. Science, 2018, 362(6416): 776-780. DOI:10.1126/science.aau5812
[75] Zhang XH. Multiple PCR detection of ETEC enterotoxin gene and cloning and expression of heat-sensitive enterotoxin[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2003 (in Chinese)
张雪寒. ETEC肠毒素基因多重PCR检测和热敏肠毒素的克隆与表达[D]. 南京: 南京农业大学硕士学位论文, 2003
Zhang FJ, Guan WY, Sun J, Hou YX. Etiology and prevention of diarrhea of calves[J]. Contemporary Animal Husbandry, 2016(8): 19-21. (in Chinese)
张凡建, 关文怡, 孙健, 侯引绪. 犊牛腹泻的病因及防治措施[J]. 当代畜牧, 2016(8): 19-21.
Ren DD, Shao ZJ, Liu SX, Wang ZS, Zhao LJ, Xia YS, Li SS, Sun YS. Ameliorative effect of Panax quinquefolius polysaccharides on antibiotic-associated diarrhea induced by clindamycin phosphate[J]. Science and Technology of Food Industry, 2021, 42(12): 354-361. (in Chinese)
任多多, 邵紫君, 刘松鑫, 王泽帅, 赵丽娟, 夏蕴实, 李珊珊, 孙印石. 西洋参多糖对克林霉素磷酸酯诱导的抗生素相关性腹泻的改善作用[J]. 食品工业科技, 2021, 42(12): 354-361.
Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases[J]. Gut, 2016, 65(12): 2035-2044. DOI:10.1136/gutjnl-2016-312729
[79] Shan R, Chen Y, Yao Z. Advance in research on the relationship between intestinal flora and non-alcoholic fatty liver disease[J]. Chinese Journal of Microecology, 2019, 31(7): 841-843. (in Chinese)
单蕊, 陈燕, 姚政. 肠道菌群与非酒精性脂肪肝病相关性研究进展[J]. 中国微生态学杂志, 2019, 31(7): 841-843.
Cao SF, Mei L, Huang H, Sun XD, Jiang J, Ren SM, Zhao RH, Zheng PY. The cholesterol-lowering probiotics improve NAFLD in mice by regulating cholesterol metabolism[J]. Chinese Journal of Microecology, 2018, 30(8): 869-874. (in Chinese)
曹少锋, 梅璐, 黄煌, 孙向东, 蒋杰, 任士萌, 赵锐豪, 郑鹏远. 降脂益生菌调节胆固醇代谢改善小鼠非酒精性脂肪肝[J]. 中国微生态学杂志, 2018, 30(8): 869-874.
Tang DM, Guo YJ, Liu F, Wang QY, Yang C. Effect of probiotic intervention on the expression of miR-33 and miR-122 in the liver of high fat diet induced obese mice[J]. Chinese Journal of Microecology, 2019, 31(9): 1005-1008. (in Chinese)
唐冬梅, 郭艳杰, 刘芳, 王秋月, 杨陈. 益生菌干预对肥胖小鼠肝脏miR-33和miR-122表达的影响[J]. 中国微生态学杂志, 2019, 31(9): 1005-1008.
Guercio Nuzio S, Di Stasi M, Pierri L, Troisi J, Poeta M, Bisogno A, Belmonte F, Tripodi M, Di Salvio D, Massa G, et al. Multiple gut-liver axis abnormalities in children with obesity with and without hepatic involvement[J]. Pediatric Obesity, 2017, 12(6): 446-452. DOI:10.1111/ijpo.12164
[83] Han L. Study on protective mechanism of soybean seed coat polysaccharide against liver injury[D]. Jinzhou: Master's Thesis of Bohai University, 2021 (in Chinese)
韩琳. 大豆种皮多糖对肝损伤防护的机制研究[D]. 锦州: 渤海大学硕士学位论文, 2021
Kirpich IA, Petrosino J, Ajami N, Feng W, Wang Y, Liu Y, Beier JI, Barve SS, Yin X, Wei X, et al. Saturated and unsaturated dietary fats differentially modulate ethanol-induced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease[J]. The American Journal of Pathology, 2016, 186(4): 765-776. DOI:10.1016/j.ajpath.2015.11.017
[85] Fan Y, Zhao X, Li N, Wu MM, Li XL. The effects of garlic polysaccharide on the intestinal microflora dysbiosis in acute alcohol-induced hepatic injury mice[J]. Food Research and Development, 2018, 39(22): 141-146. (in Chinese)
范颖, 赵鑫, 李娜, 吴曼曼, 李新莉. 大蒜多糖对急性酒精性肝损伤小鼠肠道菌群失调的影响[J]. 食品研究与开发, 2018, 39(22): 141-146. DOI:10.3969/j.issn.1005-6521.2018.22.024
Cui F, Shi CL, Yin M, Gao XP, Wang LY, He B, Zhao W, Zhao JQ. Effect of Lycium barbarum polysaccharide on gut microbiota in allergic asthmatic mice[J]. Modern Food Science & Technology, 2019, 35(9): 67-73. (in Chinese)
崔芳, 史春丽, 尹梅, 高小平, 王立英, 何斌, 赵巍, 赵嘉庆. 枸杞多糖对过敏性哮喘小鼠肠道菌群的影响[J]. 现代食品科技, 2019, 35(9): 67-73.
Yang YJ, Liu JY, Tan Y, Wang SH, Chen HM, Zhou AM. Research progress on structure-activity relationship and mechanism of hypoglycemic activity of polysaccharides[J]. Food Science, 2021, 42(23): 355-363. (in Chinese)
杨玉洁, 刘静宜, 谭艳, 王淑惠, 陈汉民, 周爱梅. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学, 2021, 42(23): 355-363. DOI:10.7506/spkx1002-6630-20200818-244
Wang Y. Isolation and purification of Lycium barbarum polysaccharide and its immune mechanism based on intestinal microflora regulation[D]. Beijing: Doctoral Dissertation of Beijing University of Chinese Medicine, 2020 (in Chinese)
王莹. 枸杞多糖的分离纯化及基于对肠道菌群调节的免疫作用机制研究[D]. 北京: 北京中医药大学博士学位论文, 2020
Deng J, Zhong J, Long J, Zou X, Wang D, Song Y, Zhou K, Liang Y, Huang R, Wei X, et al. Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats[J]. International Journal of Biological Macromolecules, 2020, 165: 2231-2243. DOI:10.1016/j.ijbiomac.2020.10.021
[90] Shi D, Zhang Y. Investigation of regulation from dandelion polysaccharides on mouse intestinal microecology[J]. Progress in Microbiology and Immunology, 2016, 44(3): 49-53. (in Chinese)
石丹, 张宇. 蒲公英多糖对小鼠肠道微生态的调节作用[J]. 微生物学免疫学进展, 2016, 44(3): 49-53.
Dong JQ. Isolation and purification of Astragalus polysaccharide and screening of its regulatory dose to intestinal microflora disorder mice[D]. Lanzhou: Master's Thesis of Gansu Agricultural University, 2021 (in Chinese)
董嘉琪. 红芪多糖的分离纯化及其对肠道菌群失调小鼠调节剂量的筛选[D]. 兰州: 甘肃农业大学硕士学位论文, 2021
Sun J, Chen H, Kan J, Gou Y, Liu J, Zhang X, Wu X, Tang S, Sun R, Qian C, et al. Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice[J]. International Journal of Biological Macromolecules, 2020, 153: 708-722. DOI:10.1016/j.ijbiomac.2020.03.053
[93]Kanwal S, Joseph TP, Owusu L, Ren XM, Li MQ, Xin Y. A polysaccharide isolated from Dictyophora indusiata promotes recovery from antibiotic-driven intestinal dysbiosis and improves gut epithelial barrier function in a mouse model[J]. Nutrients, 2018, 10(8): 1003. DOI:10.3390/nu10081003
[94]Zhao R, Hu G, Ma G, Su A, Xie M, Li X, Chen G, Zhao L. Effects of Flammulina velutipes polysaccharide on immune response and intestinal microbiota in mice[J]. Journal of Functional Foods, 2019, 56: 255-264. DOI:10.1016/j.jff.2019.03.031
[95]Chen GJ, Xie MH, Wan P, Chen D, Dai ZQ, Ye H, Hu B, Zeng XX, Liu ZH. Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2783-2795. DOI:10.1021/acs.jafc.8b00296
[96]Song Q, Zhu Z. Using Cordyceps militaris extracellular polysaccharides to prevent Pb2+-induced liver and kidney toxicity by activating Nrf2 signals and modulating gut microbiota[J]. Food & Function, 2020, 11(10): 9226-9239.
[97] Kong QH, Zhang RF, Zeng XA, Zhang MW, Ma YX, You LJ. Physicochemical properties and prebiotic activity of Sargassum fusiforme polysaccharides obtained by different extraction methods[J]. Modern Food Science & Technology, 2021, 37(5): 123-129. (in Chinese)
孔秋红, 张瑞芬, 曾新安, 张名位, 马永轩, 游丽君. 不同方法提取的羊栖菜多糖理化性质及益生活性[J]. 现代食品科技, 2021, 37(5): 123-129.
Jiang LY, Liu JC. Research progress on the role of intestinal microflora in regulating glycolipid metabolism in type 2 diabetes mellitus[J]. Chinese Journal of Diabetes, 2021(7): 549-552. (in Chinese)
蒋丽艳, 刘吉成. 肠道菌群调控2型糖尿病糖脂代谢的研究进展[J]. 中国糖尿病杂志, 2021(7): 549-552. DOI:10.3969/j.issn.1006-6187.2021.07.012
Wang YF, Deng YY, Zhang Y, Wei ZC, Liu G, Tang XJ, Wang JJ, Liao N, Zhang MW. Comparison of structure characteristics and probiotic activity of longan polysaccharides and oat polysaccharides[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 62-71. (in Chinese)
王轶帆, 邓媛元, 张雁, 魏振承, 刘光, 唐小俊, 王佳佳, 廖娜, 张名位. 龙眼多糖与燕麦多糖的结构特征及其益生活性比较[J]. 中国食品学报, 2020, 20(12): 62-71.
Shao S, Wang D, Zheng W, Li X, Zhang H, Zhao D, Wang M. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors[J]. International Immunopharmacology, 2019, 71: 411-422. DOI:10.1016/j.intimp.2019.02.038
[101]Zhao D, Dai W, Tao H, Zhuang W, Qu M, Chang Y. Polysaccharide isolated from Auricularia auricular-judae (Bull.) prevents dextran sulfate sodium-induced colitis in mice through modulating the composition of the gut microbiota[J]. Journal of Food Science, 2020, 85(9): 2943-2951. DOI:10.1111/1750-3841.15319
[102]Zeng H, Huang L, Zhou L, Wang P, Chen X, Ding K. A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains[J]. Carbohydrate Polymers, 2019, 223: 115038. DOI:10.1016/j.carbpol.2019.115038
[103]Xie SZ, Liu B, Ye HY, Li QM, Pan LH, Zha XQ, Liu J, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice[J]. Carbohydrate Polymers, 2019, 206: 149-162. DOI:10.1016/j.carbpol.2018.11.002
[104]Xie W, Huang YY, Chen HG, Zhou X. Study on the efficacy and mechanism of Lycium barbarum polysaccharide against lead-induced renal injury in mice[J]. Nutrients, 2021, 13(9): 2945. DOI:10.3390/nu13092945
[105]Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, He Y, Qi Q, Long H, Zhang Y, et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population[J]. Scientific Reports, 2017, 7(1): 11789. DOI:10.1038/s41598-017-10722-2
[106] Qi YL, Gao K, Sun YS, Li SS. Research progress of plant polysaccharides on intestinal microbiome[J]. Chinese Journal of Microecology, 2018, 30(4): 489-494. (in Chinese)
祁玉丽, 高坤, 孙印石, 李珊珊. 植物多糖对肠道微生态的作用研究进展[J]. 中国微生态学杂志, 2018, 30(4): 489-494.
相关知识
饮食疗法干预糖尿病的研究进展
妊娠期糖尿病孕妇与健康孕妇的肠道菌群差异
Stress and Distress During Pregnancy: How to Protect Both Mother and Child
Analysis of Spatial and Temporal Changes in Ecosystem Health and Its Drivers in Southwest Guangxi in the Last 20 Years
Research progress of correlation between sleep during pregnancy and offspring birth weight
Arts and health
Research progress in health management theory and its application in chronic disease management
基于GIS技术农村饮用水微生物污染健康风险分析
Urban ecosystem: human and nature compounding
学生论文详情
网址: Interaction between polysaccharide and intestinal flora and its structure https://m.trfsz.com/newsview342471.html