首页 > 资讯 > 抑郁症的辅助诊断研究——基于语音特征的探索

抑郁症的辅助诊断研究——基于语音特征的探索

QQWeiboFeedback 抑郁症的辅助诊断研究——基于语音特征的探索 Alternative TitleAn Exploratory Study on Auxiliary Diagnosis of Depression Based on Speech 汪静莹 2017-04 Abstract

抑郁症是一种以抑郁情绪为核心并伴随多种症状的严重心理疾病。找到能够有效反应抑郁症疾病状态的客观指标有利于辅助抑郁症的诊断。作为一种常见易得的行为线索,已有研究表明抑郁被试的语音和抑郁症状存在显著相关,并且语音能够用于区分抑郁症和健康人。但是,通过语音自动检测抑郁症的方法当前还有两个重要问题有待探究:一是语音识别抑郁症的诊断效力问题;二是语音的区分效果是否具备跨情境的稳定性问题。诊断效力问题将通过逐层加深区分难度的方式,利用语音分别区分抑郁症与不同症状相似程度的人群,考察最终可以利用语音区分抑郁和哪种类型的人群。研究中利用机器学习中的分类算法来考察语音特征识别抑郁症的效果,通过分类算法中的如F值等指标评价模型预测结果的好坏。跨情境稳定性问题将通过比较不同实验情境、任务和情绪下的语音的预测结果来探讨语音的区分效果是否具备跨情境的稳定性。
研究一考察语音纳入疾病之能力,旨在利用语音区分抑郁症和非心理疾患,包括3个实验。实验1为重复测量设计,比较了39名健康人、26名双相障碍和46名抑郁患者在不同情绪诱导下的情绪主观体验之间的差异。该实验的结果说明通过自陈提供的情绪信息无法区分抑郁症、双相障碍和健康人。实验2为重复测量设计,收集了58名健康人和45名抑郁患者在不同任务和情绪下的语音用于分类预测。结果显示利用语音区分抑郁症患者和健康人的F值能达到78.2%的中等预测水平,且在不同任务和情绪下的预测结果都达到了中等预测水平。实验3利用语音特征区分759名抑郁患者和996名躯体疾病患者,结果显示语音区分抑郁症和躯体疾患的F值能达到75.6%。研究一的结果表明,语音特征能够有效的用于区分抑郁症患者和健康人、抑郁症患者和躯体疾病患者,且区分效果具备跨情境的稳定性。
研究二考察语音排除疾病之能力,旨在利用语音区分抑郁症和其它心理疾患,包括2个实验。实验4利用语音特征区分抑郁症患者内部的不同子型,结果显示语音区分抑郁症中有无恐惧症的F值能达到75%。实验5为重复测量设计,利用语音特征区分45名抑郁症和17名双相障碍、58名健康人,结果显示:(1)语音区分抑郁症和双相障碍的F值能达到80.9%;(2)语音区分抑郁症、双相障碍和健康人的F值能达60.8%;(2)在不同任务和情绪下,语音的预测结果都达到了中等预测水平。研究二的结果表明,语音特征能够有效的用于区分抑郁症和与其症状相近的其它心理疾病,且区分效果具备跨情境的稳定性。
本文采用栅栏式的研究方式,逐步探索语音区分不同人群的效果,最终发现通过语音能够从抑郁症和双相障碍的混合人群中有效地识别出抑郁症且区分效果具备跨情境的稳定性。未来需要尝试在更大规模的样本上利用语音区分不同的抑郁程度和抑郁的不同子型。

Other Abstract

Major depression disorder (MDD) is a kind of mental illness which is accompany with a core symptom of depressive mood and various other symptoms. To improve the diagnostic effect, we are eager to find an objective indicator that could effectively reflect the real status of depression. Speech is one kind of easily available behavioral clue. Many studies indicated that there are significant correlations between acoustic features and depressive symptoms, and it is possible to identify depression via acoustic features. Nevertheless, there are still two questions need to be figured out: how about the diagnostic power of speech when used it to identify depression? Are the predictive effects of speech cross-situational consistency?
To figure out the question about diagnostic power of speech, we designed a series of experiments to identify depression for finding out the utmost of identification in our case. In our studies, we applied classification algorithms of machine learning to analyze the predictive effects of acoustic features, and used metrics like F-measure to estimate the predictive models. The question about cross-situational consistency of speech’ predictive effects was investigated by comparing predictive effects under different experimental situations, tasks and emotions.
The main aim of study 1 is discriminate depressed people from non-mental patients. Study 1 includes three experiments. Experiment 1 compared the subjective emotional experiences among depressed, bipolar and healthy people, the results suggested that it is hard to distinguish these three groups while used self-report emotions only. Experiment 2 found that acoustic features can be used to differentiate depression and healthy people, the F-measure was reach 78.2%. Besides, the predictive effects can reach moderate levels under different situations. Experiment 3 indicated that acoustic features can be applied to distinguish depressed people and physical patients, the best F-measure was 75.6%.
The main aim of study 2 is distinguish depressed people from other kinds of mental patients. Study 2 includes two experiments. Experiment 4 shown that acoustic features can be applied to differentiate depressed people with one kind of comorbidity and depressed people without this comorbidity, the F-measure reached 75%. The goal of experiment 5 is to distinguish depression from bipolar disorder. The results reported:
(1) acoustic features can be used to differentiate depression and bipolar disorder, the best F-measure was 80.9%; (2) acoustic identification was able to discriminate healthy, bipolar and depressed people, the best F-measure was 60.8%; (3) the predictive effects of acoustic features can reach moderate levels under different situations.
This paper explores the diagnostic power of speech, and find that depression could be effectively identified from the mixture crowd of depressed and bipolar people. And this diagnostic power has cross-situational consistency. In the future studies, researchers should try to identify different degrees of MDD or subtypes within MDD in a larger sample.

Keyword抑郁症 辅助诊断 语音 分类 预测 Subtype博士 Language中文 Degree Discipline应用心理学 Degree Grantor中国科学院研究生院 Place of Conferral北京 Document Type学位论文 Identifierhttp://ir.psych.ac.cn/handle/311026/21403 Collection社会与工程心理学研究室
Affiliation中国科学院心理研究所
Recommended Citation
GB/T 7714 汪静莹. 抑郁症的辅助诊断研究——基于语音特征的探索[D]. 北京. 中国科学院研究生院,2017. Files in This Item: File Name/Size DocType Version Access License 汪静莹-博士毕业论文.pdf(2989KB)学位论文 限制开放CC BY-NC-SAApplication Full Text Related ServicesRecommend this itemBookmarkUsage statisticsExport to EndnoteGoogle ScholarSimilar articles in Google Scholar[汪静莹]'s ArticlesBaidu academicSimilar articles in Baidu academic[汪静莹]'s ArticlesBing ScholarSimilar articles in Bing Scholar[汪静莹]'s ArticlesTerms of UseNo data!Social Bookmark/Share

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.

相关知识

语音识别抑郁症的关键技术研究
重性抑郁障碍fNIRS脑血流动力学特征与临床症状及认知功能关系的研究
基于脑电数据与面部表情影像的抑郁症病症辅助识别方法技术
基于MFCC和CNN生成谱图特征的抑郁症检测深度学习模型,Biomedical Signal Processing and Control
抑郁症的三大主要症状 —— 判断抑郁症的标准
抑郁症患者的语言使用模式
学科交叉探索语言问题,上海交通大学语言与健康研究院成立
国家卫生健康委办公厅关于探索开展抑郁症、老年痴呆防治特色服务工作的通知
抑郁症一般有哪7个特征
抑郁症症状如何辨别?有哪些特征可以判断是否患有抑郁症?

网址: 抑郁症的辅助诊断研究——基于语音特征的探索 https://m.trfsz.com/newsview682453.html