首页 > 资讯 > 新阶段植物营养学的研究重点

新阶段植物营养学的研究重点

摘要:

植物营养学是研究营养元素在土壤−植物系统迁移、转化和利用规律的基础性学科,是支撑全球粮食安全、耕地质量安全、生态环境安全的重要学科。以组学技术和人工智能为代表的学科前沿不断拓展了植物营养学的研究范畴,同时,耕地高强度利用下如何实现作物高产、养分高效、生态健康等多重目标成为新阶段植物营养学的研究重点和难点。本文回顾了近年来植物营养学在营养遗传、养分循环、新型肥料、高效施肥等方向取得的创新进展,同时,基于我国植物营养学研究短板,提出了新阶段植物营养学研究的重点任务,主要包括作物养分高效与抗逆分子调控网络、土壤养分循环与微生物组功能挖掘、新型绿色高效肥料创制与应用、农田养分协同优化原理与方法等方面,旨在推动农业高质量发展,为保障粮食安全和农业绿色发展提供科技支撑。

Abstract:

Plant nutrition is a fundamental science that studies the migration, transformation and utilization of nutrient elements in soil-plant system, it has crucial roles for sustaining global food supply, cultivated land quality, and the security of ecological environment. The frontiers of the discipline expand unceasingly with the rapid development of omics technology and artificial intelligence. In the new stage, how to achieve high crop yield, nutrient efficiency, and ecological health simultaneously has become the focus and challenge of plant nutrition research in the context of intensive utilization of cultivated land. We summarized the recent innovative developments in nutrient genetics, nutrient cycling, new fertilizers, and efficient fertilization technologies. Aiming at the shortcomings in China’s plant nutrition research, the following researches require further strengthening in urgency, as: efficient crop nutrient management and molecular regulatory networks for stress resistance, soil nutrient cycling and microbiome functional exploration, creation and application of novel green fertilizers principles, and the methods for optimizing nutrient synergy in farmlands. The goal is to provide scientific and technological schemes for food security, green and high-quality agricultural development.

[1]

Food and Agriculture Organization of the United Nations (FAO). FAOSTAT database collections [DB/OL]. [2024-4-10]. https://www.fao.org/faostat/en/#data/RFN.

[2]

Yang Y, Chen X L, Liu L X, et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis[J]. Global Change Biology, 2022, 28(21): 6446−6461. DOI: 10.1111/gcb.16361

[3]

Ai C, Liang G Q, Sun J W, et al. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils[J]. Soil Biology and Biochemistry, 2015, 80: 70−78. DOI: 10.1016/j.soilbio.2014.09.028

[4] 宋大利, 侯胜鹏, 王秀斌, 等. 中国畜禽粪尿中养分资源数量及利用潜力[J]. 植物营养与肥料学报, 2018, 24(5): 1131−1148. DOI: 10.11674/zwyf.17415

Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of animal manure and its utilization potential in China[J]. Journal of Plant Nutrition and Fertilizers., 2018, 24(5): 1131−1148. DOI: 10.11674/zwyf.17415

[5] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1−21. DOI: 10.11674/zwyf.17348

Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1−21. DOI: 10.11674/zwyf.17348

[6]

Penuelas J, Janssens I A, Ciais P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health[J]. Global Change Biology, 2020, 26(4): 1962−1985. DOI: 10.1111/gcb.14981

[7]

Peñuelas J, Sardans J. The global nitrogen-phosphorus imbalance[J]. Science, 2022, 375: 266−267. DOI: 10.1126/science.abl4827

[8]

Wang S L, Li J F, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018, 217: 444−460. DOI: 10.1016/j.rse.2018.08.026

[9]

Crippa M, Solazzo E, Guizzardi D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198−209. DOI: 10.1038/s43016-021-00225-9

[10]

Carlson K M, Gerber J S, Mueller N D, et al. Greenhouse gas emissions intensity of global croplands[J]. Nature Climate Change, 2017, 7(1): 63−68. DOI: 10.1038/nclimate3158

[11]

Rouached H, Arpat A B, Poirier Y. Regulation of phosphate starvation responses in plants: Signaling players and cross-talks[J]. Molecular Plant, 2010, 3(2): 288−299. DOI: 10.1093/mp/ssp120

[12]

Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 153−182. DOI: 10.1146/annurev-arplant-042811-105532

[13]

Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85−122. DOI: 10.1146/annurev-arplant-042817-040056

[14]

Wang Y, Wang F, Lu H, et al. Phosphate uptake and transport in plants: An elaborate regulatory system[J]. Plant and Cell Physiology, 2021, 62(4): 564−572. DOI: 10.1093/pcp/pcab011

[15]

Liu X J, Hu B, Chu C C. Nitrogen assimilation in plants: Current status and future prospects[J]. Journal of Genetics and Genomics, 2022, 49(5): 394−404. DOI: 10.1016/j.jgg.2021.12.006

[16]

Liang G. Iron uptake, signaling, and sensing in plants[J]. Plant Communications, 2022, 3(5): 100349. DOI: 10.1016/j.xplc.2022.100349

[17]

Hui J, An X, Li Z B, et al. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots[J]. The Plant Cell, 2022, 34(10): 4066−4087. DOI: 10.1093/plcell/koac225

[18]

Xu L, Zhao H Y, Wan R J, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nature Plants, 2019, 5(1): 84−94. DOI: 10.1038/s41477-018-0334-3

[19]

Yan P S, Du Q G, Chen H, et al. Biofortification of iron content by regulating a NAC transcription factor in maize[J]. Science, 2023, 382: 1159−1165. DOI: 10.1126/science.adf3256

[20]

Hu B, Jiang Z M, Wang W, et al. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401−413. DOI: 10.1038/s41477-019-0384-1

[21]

Guo M N, Ruan W Y, Zhang Y B, et al. A reciprocal inhibitory module for Pi and iron signaling[J]. Molecular Plant, 2022, 15(1): 138−150. DOI: 10.1016/j.molp.2021.09.011

[22]

Huang Y C, Wang H H, Zhu Y D, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature, 2022, 612: 292−300.

[23]

Ma B, Zhang L, Gao Q F, et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals[J]. Nature Genetics, 2021, 53(6): 906−915. DOI: 10.1038/s41588-021-00855-6

[24]

Song L, Liu J, Cao B L, et al. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat[J]. Nature, 2023, 617: 118−124. DOI: 10.1038/s41586-023-06023-6

[25]

Ruan W Y, Guo M N, Xu L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice[J]. The Plant Cell, 2018, 30(4): 853−870. DOI: 10.1105/tpc.17.00738

[26]

Guo M N, Zhang Y X, Jia X Q, et al. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants[J]. The Plant Cell, 2022, 34(9): 3319−3338. DOI: 10.1093/plcell/koac161

[27]

Yuan K, Zhang H, Yu C J, et al. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice[J]. Molecular Plant, 2023, 16(11): 1811−1831. DOI: 10.1016/j.molp.2023.09.022

[28]

Wang T T, Jin Y, Deng L X, et al. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice[J]. The Plant Cell, 2024, 36(2): 298−323. DOI: 10.1093/plcell/koad268

[29]

Guo Z L, Cao H R, Zhao J, et al. A natural uORF variant confers phosphorus acquisition diversity in soybean[J]. Nature Communications, 2022, 13(1): 3796. DOI: 10.1038/s41467-022-31555-2

[30]

Zhang Y, Tateishi-Karimata H, Endoh T, et al. High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs[J]. Science Advances, 2022, 8: eadc9785. DOI: 10.1126/sciadv.adc9785

[31]

Hu B, Wang W, Ou S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834−838. DOI: 10.1038/ng.3337

[32]

Liu Y Q, Wang H R, Jiang Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590: 600−605. DOI: 10.1038/s41586-020-03091-w

[33]

Fuhrman J, Bergero C, Weber M, et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy-water-land system[J]. Nature Climate Change, 2023, 13(4): 341−350. DOI: 10.1038/s41558-023-01604-9

[34]

Zhao Y C, Wang M Y, Hu S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4045−4050. DOI: 10.1073/pnas.1700292114

[35]

Xiao L J, Wang G C, Wang E L, et al. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production[J]. Nature Food, 2024, 5(1): 59−71. DOI: 10.1038/s43016-023-00891-x

[36]

Tao F, Huang Y Y, Hungate B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618: 981−985. DOI: 10.1038/s41586-023-06042-3

[37]

Cui J L, Zhang X M, Reis S, et al. Nitrogen cycles in global croplands altered by elevated CO2[J]. Nature Sustainability, 2023, 6(10): 1166−1176. DOI: 10.1038/s41893-023-01154-0

[38]

Dai Z M, Yu M J, Chen H H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267−5276. DOI: 10.1111/gcb.15211

[39]

Tedersoo L, Bahram M, Põlme S, et al. Global diversity and geography of soil fungi[J]. Science, 2014, 346: 1256688. DOI: 10.1126/science.1256688

[40]

Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359: 320−325. DOI: 10.1126/science.aap9516

[41]

Clark I M, Hughes D J, Fu Q L, et al. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils[J]. Scientific Reports, 2021, 11(1): 15905. DOI: 10.1038/s41598-021-95100-9

[42]

Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth & Environment, 2023, 4(1): 4−18.

[43]

Dai Z M, Liu G F, Chen H H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3): 757−770. DOI: 10.1038/s41396-019-0567-9

[44]

Wu X J, Rensing C, Han D F, et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes[J]. mSystems, 2022, 7(1): e01107-21.

[45]

Jing X Y, Gong Y H, Pan H H, et al. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature[J]. ISME Communications, 2022, 2(1): 106. DOI: 10.1038/s43705-022-00188-3

[46]

Jansson J K, McClure R, Egbert R G. Soil microbiome engineering for sustainability in a changing environment[J]. Nature Biotechnology, 2023, 41(12): 1716−1728. DOI: 10.1038/s41587-023-01932-3

[47]

Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: From community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607−621. DOI: 10.1038/s41579-020-0412-1

[48]

Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488: 91−95. DOI: 10.1038/nature11336

[49]

Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488: 86−90. DOI: 10.1038/nature11237

[50]

Zhang J Y, Zhang N, Liu Y X, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage[J]. Science China Life Sciences, 2018, 61(6): 613−621. DOI: 10.1007/s11427-018-9284-4

[51]

Xiong C, Zhu Y G, Wang J T, et al. Host selection shapes crop microbiome assembly and network complexity[J]. New Phytologist, 2021, 229(2): 1091−1104. DOI: 10.1111/nph.16890

[52]

Edwards J, Johnson C, Santos-Medellin C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences, 2015, 112(8): E911−E920.

[53]

Santos-Medellín C, Liechty Z, Edwards J, et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome[J]. Nature Plants, 2021, 7(8): 1065−1077. DOI: 10.1038/s41477-021-00967-1

[54]

Tabassum N, Ahmed H I, Parween S, et al. Host genotype, soil composition, and geo-climatic factors shape the fonio seed microbiome[J]. Microbiome, 2024, 12(1): 11. DOI: 10.1186/s40168-023-01725-5

[55]

Zhang L Y, Yuan L, Wen Y C, et al. Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices[J]. New Phytologist, 2024, 242(3): 1275−1288. DOI: 10.1111/nph.19653

[56]

Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684.

[57]

Liu Y P, Xu Z H, Chen L, et al. Root colonization by beneficial rhizobacteria[J]. FEMS Microbiology Reviews, 2024, 48(1): fuad066. DOI: 10.1093/femsre/fuad066

[58]

Yang J, Lan L Y, Jin Y, et al. Mechanisms underlying legume–rhizobium symbioses[J]. Journal of Integrative Plant Biology, 2022, 64(2): 244−267. DOI: 10.1111/jipb.13207

[59]

Berrios L, Yeam J, Holm L, et al. Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth[J]. Current Biology, 2023, 33(14): 2878−2887. DOI: 10.1016/j.cub.2023.06.010

[60]

Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481−499. DOI: 10.1038/s41477-021-00897-y

[61]

Liu C Y, Jiang M T, Yuan M M, et al. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils[J]. Nature Food, 2023, 4(10): 912−924. DOI: 10.1038/s43016-023-00848-0

[62]

Zhang L Y, Zhang M L, Huang S Y, et al. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants[J]. Nature Communications, 2022, 13(1): 3361. DOI: 10.1038/s41467-022-31113-w

[63]

Calabi-Floody M, Medina J, Rumpel C, et al. Chapter three-smart fertilizers as a strategy for sustainable agriculture[J]. Advances in Agronomy, 2018, 147: 119−157.

[64]

Niu Y H, Ke R Y, Yang T, Song J. pH-responsively water-retaining controlled-release fertilizer using humic acid hydrogel and nano-silica aqueous dispersion[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4): 2286−2291. DOI: 10.1166/jnn.2020.17216

[65]

Lam S K, Wille U, Hu H W, et al. Next-generation enhanced-efficiency fertilizers for sustained food security[J]. Nature Food, 2022, 3(8): 575−580. DOI: 10.1038/s43016-022-00542-7

[66]

Shen Z Z, Xue C, Penton C R, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy[J]. Soil Biology and Biochemistry, 2019, 128: 164−174. DOI: 10.1016/j.soilbio.2018.10.016

[67]

Tao C Y, Wang Z, Liu S S, et al. Additive fungal interactions drive biocontrol of Fusarium wilt disease[J]. New Phytologist, 2023, 238(3): 1198−1214. DOI: 10.1111/nph.18793

[68]

Zhao S X, Schmidt S, Gao H J, et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production[J]. Nature Food, 2022, 3(9): 741−752. DOI: 10.1038/s43016-022-00584-x

[69]

MacLaren C, Mead A, van Balen D, et al. Long-term evidence for ecological intensification as a pathway to sustainable agriculture[J]. Nature Sustainability, 2022, 5(9): 770−779. DOI: 10.1038/s41893-022-00911-x

[70]

Xia L L, Cao L, Yang Y, et al. Integrated biochar solutions can achieve carbon-neutral staple crop production[J]. Nature Food, 2023, 4(3): 236−246. DOI: 10.1038/s43016-023-00694-0

[71] 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201−221. DOI: 10.11674/zwyf.2022669

Ding W C, He P, Zhou W. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201−221. DOI: 10.11674/zwyf.2022669

[72]

Bakpa E P, Xie J M, Zhang J, et al. Influence of soil amendment of different concentrations of amino acid water-soluble fertilizer on physiological characteristics, yield and quality of “Hangjiao No. 2” chili pepper[J]. PeerJ, 2021, 9: e12472. DOI: 10.7717/peerj.12472

[73]

Ni H J, Zhao J C, Yang Z Y. Effects of compound fertilizer decrement and water-soluble humic acid fertilizer application on soil properties, bacterial community structure, and shoot yield in lei bamboo (Phyllostachys praecox) plantations in subtropical China[J]. Forests, 2024, 15(3): 400. DOI: 10.3390/f15030400

[74]

Lou S, Hu R Q, Liu Y, et al. The formulation of irrigation and nitrogen application strategies under multi-dimensional soil fertility targets based on preference neural network[J]. Scientific Reports, 2022, 12(1): 20918. DOI: 10.1038/s41598-022-25133-1

[75]

French E, Kaplan I, Iyer-Pascuzzi A, et al. Emerging strategies for precision microbiome management in diverse agroecosystems[J]. Nature Plants, 2021, 7(3): 256−267. DOI: 10.1038/s41477-020-00830-9

[76]

He P, Xu X P, Zhou W, et al. Ensuring future agricultural sustainability in China utilizing an observationally validated nutrient recommendation approach[J]. European Journal of Agronomy, 2022, 132(5): 126409.

[77]

Chuan L M, He P, Pampolino M F, et al. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency[J]. Field Crops Research, 2013, 140: 1−8. DOI: 10.1016/j.fcr.2012.09.020

[78]

Xu X P, He P, Pampolino M F, et al. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency[J]. Field Crops Research, 2014, 157: 27−34. DOI: 10.1016/j.fcr.2013.12.013

[79]

Xu X P, He P, Yang F Q, et al. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China[J]. Field Crops Research, 2017, 206: 33−42. DOI: 10.1016/j.fcr.2017.02.011

[80]

Xu X P, He P, Qiu S J, et al. Nutrient management increases potato productivity and reduces environmental risk: Evidence from China[J]. Journal of Cleaner Production, 2022, 369: 133357. DOI: 10.1016/j.jclepro.2022.133357

[81]

King A. Technology: The future of agriculture[J]. Nature, 2017, 544: S21−S23. DOI: 10.1038/544S21a

[82]

Shadrach F D, Kandasamy G, Neelakandan S, et al. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula)[J]. Scientific Reports, 2023, 13(1): 14108. DOI: 10.1038/s41598-023-41120-6

[83]

Rani S, Mishra A K, Kataria A, et al. Machine learning-based optimal crop selection system in smart agriculture[J]. Scientific Reports, 2023, 13(1): 15997. DOI: 10.1038/s41598-023-42356-y

[84]

van Dijk M, Morley T, Rau M L, et al. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050[J]. Nature Food, 2021, 2(7): 494−501. DOI: 10.1038/s43016-021-00322-9

[85]

Mueller N D, Gerber J S, Johnston M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490: 254−257. DOI: 10.1038/nature11420

[86]

Cui X Q, Zhou F, Ciais P, et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation[J]. Nature Food, 2021, 2(11): 886−893. DOI: 10.1038/s43016-021-00384-9

[87]

Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514: 486−489. DOI: 10.1038/nature13609

[88]

Kang J H, Wang J X, Heal M R, et al. Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production[J]. Nature Food, 2023, 4(9): 751−761. DOI: 10.1038/s43016-023-00833-7

[89]

Gu B J, Zhang X M, Lam S K, et al. Cost-effective mitigation of nitrogen pollution from global croplands[J]. Nature, 2023, 613: 77−84. DOI: 10.1038/s41586-022-05481-8

[90]

Ren C C, Zhang X M, Reis S, et al. Climate change unequally affects nitrogen use and losses in global croplands[J]. Nature Food, 2023, 4(4): 294−304. DOI: 10.1038/s43016-023-00730-z

相关知识

BECHI学优丸布局分段脑科学营养市场,学龄脑力补充进入全新阶段
新兴植物蛋白来源的研究.pptx
新研究表明:植物蛋白比动物蛋白更加健康!
Simon Hill做客Nature杂志谈论植物基功能营养最新研究进展
植物化学物质的植物化学物质与保健品研发
不同阶段宝宝的皮肤特点及护理重点
首个辅食分阶喂养临床研究报告发布!以科学实证赋能英氏品牌创新发展
【孕期各阶段营养补充】孕期各阶段营养补充要点
植物蛋白肉研究进展
植物性饮食在运动营养领域中的应用研究进展

网址: 新阶段植物营养学的研究重点 https://m.trfsz.com/newsview794692.html