首页 > 资讯 > 烘焙食品健康与营养改良研究进展

烘焙食品健康与营养改良研究进展

摘要: 烘焙食品在我国居民膳食结构中所占的比重越来越大,然而,其能量密度高、营养素密度低的特点不符合人们对健康膳食的需求,迫切需要通过配方改良赋予烘焙食品营养均衡和保健的功能,从而促进我国烘焙产业升级。本文提出烘焙食品的营养缺陷健康安全风险,分析实施烘焙食品的减脂、减糖、减盐和营养功能强化策略所面临的技术瓶颈,探讨在健康烘焙食品中优化营养标签、补充健康因子的可行性,展望未来烘焙食品的研究方向。本文将为新型健康烘焙食品的开发提供理论借鉴和参考。

Abstract: Bakery products are taking an increasingly high percentage in the diet of Chinese residents. However, bakery foods are high in energy density and low in nutrient density, which does not meet people’s requirement for a healthy diet. Food reformulation in bakery is highly desired to achieve nutrition balance and health promotion function in them, and thus promote upgrading and transformation of China’s baking industry. In this work, the health risk and food safety problems arising from the unbalanced nutrition composition of the traditional bakery products are put forward. The technical bottleneck caused by fat, sugar and salt reduction, and nutrient and healthy factor fortification are discussed. The feasibility of optimizing the nutrition labeling and supplementing healthy factors in bakery products is analyzed and the perspective of future research is addressed. This work provides theoretical reference for the development of innovative health beneficial bakery products.

图  1   烘焙食品的配方改良策略

Figure  1.   The strategy of reformulation in baking products

表  1   脂肪替代物在烘焙产品中应用举例

Table  1   Examples of fat replacers used in bakery products

烘焙产品烘焙代脂肪类型配方改良方案低脂产品感官品质健康功效文献 海绵蛋糕、玛芬蛋糕、重油蛋糕脂肪替代品蔗糖聚酯替代起酥油替代比例50%~75%:比容降低、硬度和咀嚼度上升。降低热量、减少胆固醇吸收[21]油凝胶巴西棕榈蜡10%+茶籽油90%
替代起酥油替代比例≥50%:面糊持气性良好,蛋糕孔隙率下降,体积减小,硬度增加。饱和脂肪酸含量减少[28]乳液凝胶高油酸葵花籽油51%+纤维素醚2%,替代黄油替代比例100%:面团体积减小、硬度增加,淀粉糊化温度降低,低脂蛋糕整体感官可接受度略有下降。降低脂肪含量、增加不饱和脂肪酸[7]水凝胶奇亚籽水凝胶3%替代人造奶油替代比例75%:低脂蛋糕比容增加、硬度增大、
水分活度下降,感官评分总体接受度83%。脂肪含量降低、膳食纤维益生元增加[24]脆饼干、曲奇油凝胶油相(40%):茶籽油94.5%+茶多酚酯3.0%;水相(60%):果胶2.5%,混合物替代黄油随着替代率增加,面团变硬,曲奇脆性降低;
替代比例25%、50%:低脂曲奇的延展性、断裂应力、贮藏稳定性及感官评分与黄油曲奇相当。抗氧化、零反式脂肪酸[29]乳液凝胶橄榄油37%+菊粉19%+大豆卵
磷脂2%,替代黄油替代比例50%:质构无显著改变、气孔壁变薄、风味
略微变淡,感官评分略低于未取代组,但仍可接受。脂肪含量降低、膳食纤维益生元增加、脂肪酸组成均衡[23]面包油凝胶羟丙基甲基纤维素2 g+黄原胶1.2 g+植物油120 g(葵花籽油或橄榄油),替代人造奶油替代比例100%:低脂面包气孔结构减少、硬度有所
增大,但感官评价与人造奶油面包相当;油凝胶不
影响对面包脂肪的消化与吸收。饱和脂肪酸减少、不饱和脂肪酸含量增加[30]水凝胶奇亚籽粉(含膳食纤维
33 g/100 g),替代棕榈油低脂面团变软、粘弹性降低,酵母活力增强;
替代率25%:促进发酵,面包体积48 h达到最大,
质地松软。脂肪含量减少、脂肪酸组成得到改善[25]乳液凝胶单甘酯2.7%+葵花籽油
42.1%+水55.2%替代棕榈油低脂面团的水分活度无变化,但表面变硬、不易
发酵;低脂面包比容增大、硬度降低;储藏期的
老化现象得到延缓。脂肪含量减少、饱和脂肪酸含量降低[22]

表  2   功能性甜味剂在烘焙产品中应用举例

Table  2   Examples of the functional sweeteners used in bakery products

烘焙产品蔗糖替代方案应用效果健康功效文献 纸杯蛋糕纸杯蛋糕制作中用D-阿洛酮糖
完全替代蔗糖不延迟淀粉凝胶化温度、烘焙过程的失重减少,
延迟焙烤时间后可达到相同质地和口感。抑制葡萄糖和果糖的吸收,提高胰岛素敏感性,减少体内脂肪的堆积[33]曲奇饼干低聚木糖添加量1.4%增加烘焙特征,如焦糖风味、色泽、酥脆度,甜度增加,
增强风味。增加益生因子[34]玛芬蛋糕甜叶菊苷A+膳食纤维替代
30%蔗糖甜叶菊苷A+菊粉(或聚葡萄糖)组蛋糕在质构、
色泽和感官评价得分无显著差异。能量降低6 kJ/100 kJ;
膳食纤维增加7 g/100 g[35]无糖甜面包用木糖醇替代蔗糖,添加量10%、15%、20%20%:面粉峰值粘度提高,有利于淀粉糊化;
5%:面团形成和稳定时间延长;
10%:面团延展性提高,面包弹性增加、硬度下降;
10%、15%:感官评分优于对照组。甜度1.2倍,低热量,不致龋齿[36]无糖海绵蛋糕分别采用一定量的麦芽糖醇、
甘露糖醇、木糖醇、山梨糖醇、
异麦芽糖、低聚果糖聚葡萄糖
完全替代蔗糖木糖醇:感官评分与蔗糖组相近,甜度、后味、
蛋糕外观形状优于蔗糖组,但色泽较浅,不能产生美
拉德反应;
麦芽糖醇:感官评分略低于木糖醇组;
甘露糖醇:感官评分最低,不可接受。木糖醇:甜度1.2倍,微清凉口感;
麦芽糖醇:甜度75%~95%,口感柔和。两者均低热量、不致
龋齿[37]酥性饼干甘露糖醇替代75%蔗糖面团硬度增加,饼干延展性和感官品质变差,同时添加10%酸面团后面团的硬度、胶着性、回复性及饼干的硬度、甜度和风味得到改善。升糖指数降低[38]

表  3   烘焙产品的减盐方案

Table  3   Strategy of salt reduction in bakery products

减盐策略烘焙产品实施方案应用效果文献 逐步控盐法式面包三年内,对22个面包店实施减盐实验,将面包中NaCl含量逐渐减少30%:1~3月每月减少10%,4~36月维持这一低盐
水平。面包中盐含量从1.7 g/100 g降至1.1 g/100 g,不影响消费者的接受度和
烘焙产品的销量。[39]非钠盐替
代面包KCl替代面包中20%~30%的NaCl。不会产生金属味或苦味,有利于改善钾元素的摄入。[39]面包KCl、MgCl2和CaCl2单一或
混合物替代50%NaCl。二价阳离子对面团和面包品质的影响更大,钙离子降低发酵面团的粘合性,钾盐不影响面团的粘附性和延伸性。KCl替代50%NaCl不影响面包气孔结构、面包皮硬度和感官品质接受度。[40]面包海盐(低钠盐,含NaCl、KCl、MgCl2)完全替代面包中的NaCl。增加面团吸水性;面团延伸性提高,面包体积增大;面包色泽加深,游离糖和孔隙率降低;不影响酵母发酵活性。添加0.5%海盐的低钠面包品质最佳。[41]多感官协同增强咸味感知法棍添加酸面团:干酸面团0%~10%+NaCl 0%~0.25%,旋转中心组合实验设计。添加酸面团降低钠盐不影响产品的比容、外形和质构;干酸面团添加量5%时,NaCl减少用量17%~45%,法棍的感官品质最佳。[42]面包添加风味增强剂动物蛋
白酶解物。蛋白酶解物添加量5.85%时发酵速率略降低,面包体积不变,但硬度增大、粘附性降低,添加蛋白酶解物能显著提高面包咸度。发酵糖、海盐、干酸面团协同作用可在不影响面包咸味的前提下使NaCl用量减少到0.02%。[43, 44]法式咸面包降低NaCl用量+添加
维生素B4。提高消费者对面包咸味的感知,可在不影响面包咸味的前提下替代25%NaCl。减盐-VitB4强化面包在风味、质构和价格上与传统面包相当。[45]

表  4   营养和功能因子强化提升烘焙食品营养素密度的方案

Table  4   Strategies of enhancement of nutritive density in bakery products by fortification of nutrients and functional components

烘焙产品营养素/健康因子实施方案产品感官品质营养与健康功效文献 无麸质蛋糕全豆粉稻米粉与两种豆粉(绿豆和豇豆)按80:20,65:35和50:50的比例混合制备无麸质蛋糕。增加豆粉比例造成蛋糕比容下降、气孔减少、硬度增大、外表塌陷;豆粉与稻米粉质量1:1时蛋糕结构稳定,感官评分与小麦蛋糕相当。增加蛋白质、膳食纤维和微量元素含量[49]无麸质面包豆类分离蛋白分别用大豆分离蛋白浓缩液、豌豆分离蛋白或羽扇豆蛋白替代无麸质面包配方中6.7%的淀粉和3.3%的果胶。大豆蛋白:增加面团存储和损耗模量,面包体积减小,气孔密度降低,直径>5 mm的气孔增多,面包皮色泽加深;豌豆蛋白、羽扇豆蛋白:与大豆蛋白组相似,但不影响面包比容。增加蛋白质含量,优化氨基酸组成[51]全麦面包豆荚粉绿豆、豌豆、牧豆全荚粉分别替代全麦面包配方中20%的全麦粉。绿豆和豌豆面包蛋白含量高,牧豆面包纤维含量高。牧豆面包比容与全麦面包相比,近降低7%。以上添加豆荚粉面包感官可接受度高。增加蛋白质、膳食纤维和多酚类物质[50]白面包膳食纤维分别添加角豆纤维、豌豆纤维、菊粉替代3%小麦粉。添加纤维粉使得面包更松软,面包比容略低,感官评分6.1~6.3(对照6.8),总体可接受。添加角豆纤维和菊粉可改善面团发酵进程。补充膳食纤维[52]面包益生菌乳酸菌L. acidophilus经乳清蛋白包埋后,按1%浓度分散于5%淀粉溶液,形成含有益生菌的可食涂抹液,涂膜于半熟面包表面,180 ℃烘焙16 min。涂抹层一定程度上影响面包气孔结构、增加水分活度和降低断裂应力,但感官评分可接受度高。烘焙和储藏24 h后活菌数为7 lg CFU/70 g 面包。补充益生菌[53]面包天然抗氧化成分向全麦面包配方中添加一定量绿茶粉。添加量1 g绿茶粉/100 g面粉时,面包比容、硬度、回弹力不受影响,面包贮藏期的氧化稳定性提高。抗自由基氧化[54]绿茶儿茶素萃取组分(儿茶素>65%)按一定比例添加面包
配方。添加量>0.45%时显著降低面包升糖指数,添加量2%时,体外消化过程中前90 min葡萄糖释放量减少,快消化淀粉含量降低。降低升糖指数[55] [1] 覃尔岱, 王靖, 覃瑞, 等. 我国不同区域膳食结构分析及膳食营养建议[J]. 中国食物与营养,2020,26(8):82−86. [QIN E D, WANG J, QIN R, et al. Analysis of dietary structure and dietary nutrition advice in different regions of China[J]. Food and Nutrition in China,2020,26(8):82−86. doi: 10.3969/j.issn.1006-9577.2020.08.019 [2] 韩秀萍, 李红文, 高杨, 等. 面向慢性疾病的未来健康管理模式的思考[J]. 中国现代医生,2021,59(23):150−153. [HAN X P, LI H W, GAO Y, et al. Reflection on the future health management model for chronic diseases[J]. China Modern Doctor,2021,59(23):150−153. [3] 孙双双. 国家卫健委解读合理膳食行动成效[J]. 中国食品工业,2021(18):30−33. [SUN S S. The national health and health commission interprets the effectiveness of the reasonable diet action[J]. China Food Industry,2021(18):30−33. [4] 徐兴利. 前景可观瓶颈尚存的烘焙行业[J]. 中国食品,2016(12):110−111. [XU X L. Baking industry with promising prospects and remaining bottlenecks[J]. China Food,2016(12):110−111. doi: 10.3969/j.issn.1000-1085.2016.12.044 [5] 车娟, 刘姣, 朱玉芳, 等. 饱和脂肪酸与心血管疾病关系的研究进展[J]. 天津医药,2019,47(6):663−666. [CHE J, LIU J, ZHU Y F, et al. Advances in the relationship between saturated fatty acids and cardiovascular diseases[J]. Tianjin Medical Journal,2019,47(6):663−666. doi: 10.11958/20181446 [6] 黄昭先, 王满意, 武德银, 等. 食品专用油脂中反式脂肪酸及其控制[J]. 粮食与油脂,2019,32(8):21−23. [HUANG Z X, WANG M Y, WU D Y, et al. Trans fatty acids in food oils and fats and their control[J]. Cereals & Oils,2019,32(8):21−23. doi: 10.3969/j.issn.1008-9578.2019.08.007 [7]

SILOW C, AXEL C, ZANNINI E, et al. Current status of salt reduction in bread and bakery products-A review[J]. Journal of Cereal Science,2016,72:135−145. doi: 10.1016/j.jcs.2016.10.010

[8]

PONZO V, PELLEGRINI M, COSTELLI P, et al. Strategies for reducing salt and sugar intakes in individuals at increased cardiometabolic risk[J]. Nutrients,2021,13(1):279−296. doi: 10.3390/nu13010279

[9] 杨月欣, 高超, 王竹, 等. 《中国食品工业减盐指南》解读[J]. 中华预防医学杂志,2019(6):549−552. [YANG Y X, GAO C, WANG Z, et al. Interpretation of the "guidelines for Salt Reduction in China's Food Industry"[J]. Chinese Journal of Preventive Medicine,2019(6):549−552. doi: 10.3760/cma.j.issn.0253-9624.2019.06.002 [10]

MARTINEZ M, GOMEZ M. Current trends in the realm of baking: When indulgent consumers demand healthy sustainable foods[J]. Foods,2019,8(10):518−520. doi: 10.3390/foods8100518

[11]

ARSLAN M, RAKHA A, ZOU X B, et al. Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints[J]. Trends in Food Science & Technology,2019,83:194−202.

[12]

STAMATAKI N S, YANNI A E, KARATHANOS V T. Non-cereal ingredients for the attenuation of glycaemic response to bread: A review of the clinical evidence[J]. Food & Function,2016,7:2926−2936.

[13]

COLLA K, COSTANZO A, GAMLATH S. Fat replacers in baked food products[J]. Foods,2018,7(12):192−203. doi: 10.3390/foods7120192

[14]

GHOSH S, SUDHA M L. A review on polyols: New frontiers for health-based bakery products[J]. International Journal of Food Sciences and Nutrition,2012,63(3):372−379. doi: 10.3109/09637486.2011.627846

[15]

MARTINS Z E, PINHO O, FERREIRA I M P L. Food industry by-products used as functional ingredients of bakery products[J]. Trends in Food Science & Technology,2017,67:106−128.

[16]

MOLLAKHALILI-MEYBODI N, ARAB M, NEMATOLLAHI A, et al. Prebiotic wheat bread: Technological, sensorial and nutritional perspectives and challenges[J]. LWT-Food Science and Technology,2021,149:111823−111830. doi: 10.1016/j.lwt.2021.111823

[17]

MARTINEZ-CERVERA S, SALVADOR A, SANZ T. Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties[J]. LWT-Food Science and Technology,2015,63(2):1083−1090. doi: 10.1016/j.lwt.2015.04.067

[18] 柴秀航, 张帅, 刘元法. 结构化油脂及其在烘焙产品中的应用研究进展[J]. 食品科学,2022,43(15):336−344. [CHAI X G, ZHANG S, LIU Y F, et al. Structured oil and its application in baking products: A review[J]. Food Science,2022,43(15):336−344. doi: 10.7506/spkx1002-6630-20210711-109 [19] 姚舒婷, 智慧, 沈欣怡, 等. 脂肪替代品在烘焙行业中的研究进展[J]. 食品与发酵工业,2020,46(6):285−291. [YAO S T, ZHI H, SHEN X Y, et al. Research progress of fat substitutes in baking industry[J]. Food and Fermentation Industries,2020,46(6):285−291. doi: 10.13995/j.cnki.11-1802/ts.022858 [20]

GUTIERREZ-LUNA K, ASTIASARAN I, ANSORENA D. Gels as fat replacers in bakery products: A review[J]. Critical Reviews in Food Science and Nutrition,2020,62(14):3768−3781.

[21] 汤晓娟, 王凤, 贾春利, 等. 含Olestra低脂休闲蛋糕体系的流变学、微结构与烘焙特性[J]. 食品科学,2013,34(1):1−7. [TANG X J, WANG F, JIA C L, et al. Effect of olestra on microstructure, rheological properties and baking properties of snack cake[J]. Food Science,2013,34(1):1−7. [22]

CALLIGARIS S, MANZOCCO L, VALOPPI F, et al. Effect of palm oil replacement with monoglyceride organogel and hydrogel on sweet bread properties[J]. Food Research International,2013,51(2):596−602. doi: 10.1016/j.foodres.2013.01.007

[23]

GIARNETTI M, PARADISO V M, CAPONIO F, et al. Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil[J]. LWT-Food Science and Technology,2015,63(1):339−345. doi: 10.1016/j.lwt.2015.03.063

[24]

FERNANDES S S, MERCEDES SALAS-MELLADO M D L. Addition of chia seed mucilage for reduction of fat content in bread and cakes[J]. Food Chemistry,2017,227:237−244. doi: 10.1016/j.foodchem.2017.01.075

[25]

ZETTEL V, HITZMANN B. Chia (Salvia hispanica L.) as fat replacer in sweet pan breads[J]. International Journal of Food Science and Technology,2016,51(6):1425−1432. doi: 10.1111/ijfs.13110

[26]

SVEC I, HRUSKOVA M, JURINOVA I. Physicochemical characteristics of wheat-chia mixture[J]. Chemicke Listy,2014,108(12):1158−1161.

[27]

FERRARI FELISBERTO M H, WAHANIK A L, GOMES-RUFFI C R, et al. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes[J]. LWT-Food Science and Technology,2015,63(2):1049−1055. doi: 10.1016/j.lwt.2015.03.114

[28]

KIM J Y, LIM J, LEE J, et al. Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization[J]. Journal of Food Science,2017,82(2):445−452. doi: 10.1111/1750-3841.13583

[29]

PAN L, WU X, LUO S, et al. Effects of tea polyphenol ester with different fatty acid chain length on camellia oil-based oleogels preparation and its effects on cookies properties[J]. Journal of Food Science,2020,85(8):2461−2469. doi: 10.1111/1750-3841.15341

[30]

BASCUAS S, MORELL P, QUILES A, et al. Use of oleogels to replace margarine in steamed and baked buns[J]. Foods,2021,10(8):1781−1791. doi: 10.3390/foods10081781

[31]

STRUCK S, JAROS D, BRENNAN C S, et al. Sugar replacement in sweetened bakery goods[J]. International Journal of Food Science and Technology,2014,49(9):1963−1976. doi: 10.1111/ijfs.12617

[32]

DING S, YANG J. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products-A review[J]. Trends in Food Science & Technology,2021,111:670−679.

[33]

BOLGER A M, RASTALL R A, ORUNA-CONCHA M J, et al. Effect of D-allulose, in comparison to sucrose and D-fructose, on the physical properties of cupcakes[J]. LWT-Food Science and Technology,2021,150:111989−112001. doi: 10.1016/j.lwt.2021.111989

[34]

JUHÁSZ R, PENKSZA P, SIPOS L. Effect of xylo-oligosaccharides (XOS) addition on technological and sensory attributes of cookies[J]. Food Science & Nutrition,2020,8(10):5452−5460. doi: 10.1002/fsn3.1802

[35]

ZAHN S, FORKER A, KRUEGEL L, et al. Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins[J]. LWT-Food Science and Technology,2013,50(2):695−701. doi: 10.1016/j.lwt.2012.07.026

[36]

SUN Q, XING Y, XIONG L. Effect of xylitol on wheat dough properties and bread characteristics[J]. International Journal of Food Science and Technology,2014,49(4):1159−1167. doi: 10.1111/ijfs.12412

[37]

RONDA F, GOMEZ M, BLANCO C A, et al. Effects of polyols and nondigestible oligosaccharides on the quality of sugar-free sponge cakes[J]. Food Chemistry,2005,90(4):549−555. doi: 10.1016/j.foodchem.2004.05.023

[38]

SAHIN A W, RICE T, ZANNINI E, et al. The incorporation of sourdough in sugar-reduced biscuits: A promising strategy to improve techno-functional and sensory properties[J]. European Food Research and Technology,2019,245(9):1841−1854. doi: 10.1007/s00217-019-03302-3

[39]

EL ATI J, DOGGUI R, EL ATI-HELLAL M. A successful pilot experiment of salt reduction in tunisian bread: 35% gradual decrease of salt content without detection by consumers[J]. International Journal of Environmental Research and Public Health,2021,18(4):1590−1595. doi: 10.3390/ijerph18041590

[40]

VAN BUREN L, DOTSCH-KLERK M, SEEWI G, et al. Dietary impact of adding potassium chloride to foods as a sodium reduction technique[J]. Nutrients,2016,8(4):235. doi: 10.3390/nu8040235

[41]

REISSNER A, WENDT J, ZAHN S, et al. Sodium-chloride reduction by substitution with potassium, calcium and magnesium salts in wheat bread[J]. LWT-Food Science and Technology,2019,108:153−159. doi: 10.1016/j.lwt.2019.03.069

[42]

CRUCEAN D, DEBUCQUET G, RANNOU C, et al. Vitamin B4 as a salt substitute in bread: A challenging and successful new strategy. Sensory perception and acceptability by French consumers[J]. Appetite,2019,134:17−25. doi: 10.1016/j.appet.2018.12.020

[43]

SIMSEK S, MARTINEZ M O. Quality of dough and bread prepared with sea salt or sodium chloride[J]. Journal of Food Process Engineering,2016,39(1):44−52. doi: 10.1111/jfpe.12197

[44]

NOGUEIRA A D C, STEEL C J. Process parameters and technological quality of French rolls produced with dry sourdough to reduce sodium[J]. Cereal Chemistry,2016,93(2):138−144. doi: 10.1094/CCHEM-05-15-0095-R

[45]

CHO Y, LEE J, LEE M, et al. Effects of hydrolyzed animal protein on the enhancement of saltiness and quality characteristics of white pan bread[J]. Food and Bioprocess Technology,2019,12(11):1832−1841. doi: 10.1007/s11947-019-02332-9

[46]

VOINEA A, STROE S, CODINA G G. The effect of sea salt, dry sourdough and fermented sugar as sodium chloride replacers on rheological behavior of wheat flour dough[J]. Foods,2020,9(10):1465−1484. doi: 10.3390/foods9101465

[47]

ZHANG L, BOOM R M, CHEN X D, et al. Recent developments in functional bakery products and the impact of baking on active ingredients[J]. IDS'2018-21st International Drying Symposium,2018:667−674.

[48] 卜坚珍, 于立梅, 曾晓房, 等. 健康型烘焙制品的研究进展[J]. 安徽农业科学,2017,45(26):93−95. [BU J Z, YU L M, ZENG X F, et al. Research progress of health type baking products[J]. Journal of Anhui Agricultural Science,2017,45(26):93−95. doi: 10.3969/j.issn.0517-6611.2017.26.028 [49]

CARDOSO R V C, FERNANDES A, GONZALEZ-PARAMAS A M, et al. Flour fortification for nutritional and health improvement: A review[J]. Food Research International,2019,125:108576−108586. doi: 10.1016/j.foodres.2019.108576

[50]

JEONG D, HONG J S, LIU Q, et al. The effects of different levels of heat-treated legume flour on nutritional, physical, textural, and sensory properties of gluten-free muffins[J]. Cereal Chemistry,2021,98(2):392−404. doi: 10.1002/cche.10379

[51]

ZIOBRO R, JUSZCZAK L, WITCZAK M, et al. Non-gluten proteins as structure forming agents in gluten free bread[J]. Journal of Food Science and Technology-Mysore,2016,53(1):571−580. doi: 10.1007/s13197-015-2043-5

[52]

ALTAMIRANO-FORTOUL R, MORENO-TERRAZAS R, QUEZADA-GALLO A, et al. Viability of some probiotic coatings in bread and its effect on the crust mechanical properties[J]. Food Hydrocolloids,2012,29(1):166−174. doi: 10.1016/j.foodhyd.2012.02.015

[53]

MOLLAKHALILI-MEYBODI N, ARAB M, NEMATOLLAHI A, et al. Prebiotic wheat bread: Technological, sensorial and nutritional perspectives and challenges[J]. LWT-Food Science and Technology,2021,149:111832−111840. doi: 10.1016/j.lwt.2021.111832

[54]

GROSSO G. Effects of polyphenol-rich foods on human health[J]. Nutrients,2018,10(8):1089−1094. doi: 10.3390/nu10081089

[55]

NING J, HOU G G, SUN J, et al. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread[J]. LWT-Food Science and Technology,2017,79:342−348. doi: 10.1016/j.lwt.2017.01.052

[56]

GONZALEZ-MONTEMAYOR A M, SOLANILLA-DUQUE J F, FLORES-GALLEGOS A C, et al. Green bean, pea and mesquite whole pod flours nutritional and functional properties and their effect on sourdough bread[J]. Foods,2021,10(9):2227−2241. doi: 10.3390/foods10092227

[57]

WANG J S, ROSELL C M, DE BARBER C B. Effect of the addition of different fibres on wheat dough performance and bread quality[J]. Food Chemistry,2002,79(2):221−226. doi: 10.1016/S0308-8146(02)00135-8

[58]

GOH R, GAO J, ANANINGSIH V K, et al. Green tea catechins reduced the glycaemic potential of bread: An in vitro digestibility study[J]. Food Chemistry,2015,180:203−210. doi: 10.1016/j.foodchem.2015.02.054

相关知识

一鸣食品:乳香与烘焙的交织传奇
“ 轻食 ” 烘焙发展迅猛|未来烘焙人如何抢占商机?!
烘焙酱料发展前景分析.pptx
创意单品、健康化、预制烘焙…2024年烘焙赛道有哪些新趋势?
乳制品营养价值与健康效益的研究进展
2020年中国烘焙食品行业市场现状及发展趋势分析 早餐化、鲜食化、健康化发展
烘焙食品包装走向“纸时代”
烘焙亚麻籽——ω
食品减盐研究进展
站在低GI食品风口上,盼盼食品再次引领健康烘焙新风尚!

网址: 烘焙食品健康与营养改良研究进展 https://m.trfsz.com/newsview864265.html