首页 > 资讯 > 中国人限制性饮食和食物渴求的认知神经机制

中国人限制性饮食和食物渴求的认知神经机制

·主编特邀(Editor-In-Chief Invited)·

编者按: 在美味食物丰富的当今社会, 限制性饮食(即, 节食)和食物渴求现象十分普遍, 且与人们的身心健康密切相关, 例如可能引发饮食失调、肥胖等健康问题, 引起国内外心理学界的广泛关注。因此, 本期主编特邀西南大学心理学部陈红教授撰写《中国人限制性饮食和食物渴求的认知神经机制》一文, 归纳中国文化背景下的限制性饮食和食物渴求认知神经表现的研究, 对这些结果的研究对象、方法、创新和进展等方面进行有意义的论述, 并在此基础上对该领域未来研究和应用提出展望。作者陈红教授及其团队自2000年起一直从事身体自我和饮食行为研究, 在对中国人限制性饮食和食物渴求的探索上取得了原创性的研究成果, 并推进该领域在国际上的进展。

1 引言

中国的饮食文化源远流长, 俗语“民以食为天”反映出中国人对于饮食的重视。饮食行为与每一个人的生活息息相关, 科学饮食对人们的身心健康有着至关重要的作用。随着社会的进步和发展, 美味食物随处可见, 同时人们对自身形象和健康的要求不断提高。一方面, 现代富足社会中, 食物既美味可口又方便获得, 因此人们往往容易被美味食物吸引而产生食物渴求; 另一方面, 为了健康管理, 以及塑造和维持苗条的身材, 大量以年轻女性为主的群体采用限制性饮食(即, 节食)的方式来减少进食。在当前中国社会中, 食物渴求和限制性饮食现象十分普遍, 且与人们的健康密切相关。例如, 食物渴求可能导致暴食和肥胖(Zhou et al., 2019), 限制性饮食可能诱发厌食症, 或反向发展为“去抑制进食”, 即反而吃更多(王劭睿, 陈红,2019; Schaumberg et al., 2016)。因此, 关注中国人食物渴求和限制性饮食的认知神经机制具有十分重要的理论价值和现实意义。食物渴求和限制性饮食的研究最早在西方兴起, 但是由于饮食受地域和文化影响较大, 西方研究结论以及采用的食物材料未必适合中国人。中国食物图片库的建立为开展中国饮食行为研究提供了方法上的支持和依据(Kong et al., 2015)。近几年, 国内学者进行一系列研究考察了中国人限制性饮食的认知特征和神经机制, 探索一般食物渴求脑机制的同时, 开展有中国区域特色的辣食渴求研究。这些成果不仅在中国文化背景下系统探讨了中国人饮食行为的认知神经机制, 同时进一步推进该研究领域在国际上的发展。

2 限制性饮食

限制性饮食(restrained eating, RE)是指为了减肥或保持体重而节食的倾向, 通常表现为摄入低卡路里食物、流食, 以及间歇性禁食/断食等(Polivy et al., 2020)。一些研究认为限制性饮食可以实现减少食物摄入、减轻体重的目的; 相反, 大量研究发现限制性饮食者(restraint eaters, REs)无法长期控制饮食, 甚至比非限制性饮食者(non-restraint eaters, NREs)表现出更多的(高热量)食物摄入, 即去抑制进食。研究者们将后者现象称为限制性饮食的反调节作用(Zhang et al., 2019)。限制性饮食对食物摄入的影响是正向还是反向的, 研究者们仍然存在争议。目前, 大多数认知神经证据支持反向调节的观点。此外, 限制性饮食者可以区分为成功和失败两类, 成功的限制性饮食者对应着饮食控制行为, 而失败的限制性饮食者则对应着去抑制进食。

2.1 限制性饮食者的反向调节

限制性饮食者(REs)通常面临着享受美食和控制体重两种目标的冲突, 且往往美食当前时, 会忽略节食或变瘦的目标。神经成像研究也发现, REs抑制控制脑区激活较弱, 而奖赏脑区激活程度更强。这些结果从认知神经机制的角度解释了限制性饮食的反调节作用, 即为什么大多数节食者更容易表现出“反而吃更多”的去抑制进食行为。

饮食的目标冲突模型认为, 节食者通常面临两个相互矛盾的目标:享受美食与控制体重(Stroebe et al., 2013)。由于现在社会中接触大量美食信息, REs更容易激活享受美食目标、抑制控制体重目标, 从而导致去抑制进食和不健康饮食行为。即面临两种目标冲突时, REs对享受美食目标表现出更多注意偏好和较弱的抑制控制能力。目标冲突模型在行为和神经表现上都得到了证据支持。首先, 在行为上, 为了直接考察REs在享受美食和控制体重两种目标冲突下的抑制控制, 我们的研究采用创新的图片-词语干扰范式, 将食物信息和身材信息同时呈现, 形成直观的目标冲突。结果发现食物信息冲突条件下, 年轻女性REs比身材信息冲突条件下反应时更长、错误率更高。即相比于身材信息, 限制性饮食的女性更偏好食物信息, 可以理解为对美食信息加工自动化, 且抑制控制过程参与度较低(Chen et al., 2019)。其次, 在神经表现上, 事件相关电位(ERP)的研究也发现了REs的抑制控制和饮食行为之间存在直接关联。例如, 在食物go/no-go任务中, 发现食物暴露条件下REs抑制控制能力减弱。即与非限制性饮食者相比, REs的额叶和额叶中央区与食物相关的no-go N2a波幅较小。此外, 与基线相比, 食物暴露后REs的no-go P3波幅显著增加, 而UREs没有表现出差异(Zhou et al., 2018)。N2和P3是抑制控制研究的常用指标。其中, N2a与抑制控制控制有关(Pires et al., 2014), 表明REs对食物信息的抑制控制能力降低; 而P3与加工强度有关(Chen et al., 2018), 食物暴露后P3波幅增加, 表明REs需要分配更多注意资源到对食物信息的抑制控制中。

以上研究从行为和生理层面支持了中国人限制性饮食群体也符合西方背景下的饮食目标冲突模型, 同时进一步推动了REs抑制控制的研究进展。例如, 通过实验范式的方法创新直接比较REs在享受美食和控制体重两种目标冲突条件下的认知控制表现(Chen et al., 2019); 采用ERP技术识别REs抑制性控制降低的可能神经标志物(Zhou et al., 2018)。为理解为什么许多限制性饮食者表现出去抑制进食行为提供了证据。

在检验享受美食-控制体重冲突的行为和ERP研究中, 主要从抑制控制的角度支持目标冲突模型。但是, 由于实验范式和测量指标的限制, 导致无法直接考察食物信息是否以及如何诱发REs享乐目标。因此, 神经影像学研究通过考察大脑区域激活, 不仅进一步支持了REs抑制控制能力降低, 同时也发现了食物奖赏性提高和奖赏脑区改变的相关证据, 为限制性饮食的反调节作用提供了一个新的解释视角。

限制性饮食的神经成像研究大多采用功能磁共振成像(fMRI), 在任务态中考察REs的大脑活动。总体而言, 与非限制性饮食者(NREs)相比, REs在奖赏相关脑区(如, 脑岛和眶额皮层[OFC])有更强的神经激活, 与抑制控制相关的脑区(如, 背外侧前额叶[dlPFC]和前扣带回[ACC])激活减少(Wanget al., 2016)。例如, 在食物信息和中性信息的oddball任务中, 当对高热量食物图片进行反应时, REs比NREs反应更快, 在奖赏(脑岛, OFC)、注意(额上回)和视觉加工(颞上回)相关脑区的激活增强, 但是抑制控制脑区(ACC)激活下降。REs对低热量食物的反应时最长, 在低热量食物-中性图片对比条件下, 注意和视觉加工相关脑区的激活明显强于NREs (Wang et al., 2016)。表明虽然REs对食物信息都具备较高的敏感性, 但是他们对高热量食物具有注意偏向, 而对低热量食物则表现为更多的注意资源分配。此外, 由于冲动控制需要认知资源, 并且是体重控制和体重波动的重要行为关联(Weygandt et al., 2015), 因此不应忽视与冲动控制有关脑区对REs饮食行为的影响。我们采用巧克力延迟折扣任务考察女性REs冲动行为的神经关联, 发现REs在纹状体和dlPFC激活增强。同时, 右侧纹状体激活与奖赏系统呈正相关, 左侧dlPFC与纹状体激活正相关, 表明REs冲动脑区(纹状体)是对食物奖赏脑区的补充(Dong et al., 2015)。因此, 在食物相关任务中, REs大脑激活模式主要表现为奖赏脑区激活增强, 而抑制控制脑区激活降低。此外, 注意、视觉和冲动相关脑区的激活也表明了食物信息对REs具有更强烈和难以抑制的吸引力。

静息态功能磁共振成像(rs-fMRI)是测量没有执行明确任务时, 人们大脑BOLD信号的自发活动(Stopyra et al., 2019)。我们的系列研究发现, 当缺乏食物线索时, REs在奖赏和注意脑区也表现出更强的激活, 而抑制控制脑区则表现出自发活动减少。首先, 研究者(Dong et al., 2014)使用区域同质性(ReHo)发现REs在与奖赏(OFC)、注意(舌回、楔状体、顶下小叶)和身体感知功能(即中央旁小叶、前岛叶)相关的脑区中显示出较多ReHo激活。第二, 研究者(Dong et al., 2015)采用ReHo分析方法, 发现年轻女性REs在食物奖赏脑区(OFC/腹内侧前额叶[vmPFC])表现出更多激活, 抑制控制脑区(dlPFC)自发活动减少。第三, 研究者(Chen et al., 2016)通过体素镜像同位体连通性(VMHC)考察大脑半球之间的相互作用, 评估了REs的抑制控制和奖赏系统之间的功能协调。发现与UREs相比, 女性REs表现出dlPFC的VMHC降低, 右侧前额叶和ACC功能连接改变。这种抑制控制区域大脑半球间功能连接降低和奖赏相关区域功能连接改变有助于解释REs无法控制享乐目标而采取进食行为, 并表现出更高水平的暴食症状。以上静息态fMRI结果表明, 限制性饮食者在奖赏-抑制脑区的自发神经活动也发生了改变, 即在食物相关任务fMRI研究中观察到的大脑激活模式在无食物信息刺激的条件下仍然存在。

此外, 大脑结构的改变也是解释限制性饮食及其反调节作用的一个重要的潜在神经机制。一些研究考察了饮食行为与大脑结构变化之间的关系, 主要表现在奖励脑区的灰质体积(GMV)较高, 而涉及抑制控制的脑区GMV较低。例如, 采用三因素饮食量表发现, 去抑制进食与左侧额中回GMV负相关, 限制性饮食与壳核GMV呈负相关、与dlPFC (Yao et al., 2016)和右侧楔前叶GMV正相关(Song et al., 2019)。此外, 采用限制性饮食量表发现, 较高RE水平与OFC和左侧岛叶GMV正相关、与双侧后扣带回GMV负相关(Su et al., 2017)。这些结果表明, 限制性饮食和去抑制进食相关的大脑结构变化可能导致抑制控制功能降低和食物敏感性的增加。

综上所述, 任务态、静息态和结构态fMRI结果揭示了中国人REs认知神经机制, 同时这些多模态结果进一步推进了国际限制性饮食的研究进展。与行为和ERP结果一致, fMRI研究中也发现了REs与抑制控制脑区激活降低、灰质体积减少相关。此外, 脑成像结果还发现了REs在奖赏脑区激活增强、灰质体积增加。总的来说, 这些神经成像研究强调了REs如何增强食物线索的奖赏价值、降低抑制控制能力, 从而增加REs在食物丰富环境中忽略体重控制目标、采取去抑制进食的风险。

2.2 成功和失败限制性饮食者的认知神经表现差异

虽然大多数REs通常无法长期保持节食, 甚至表现出去抑制进食, 但是也存在一些REs可以比较稳定地维持减少热量摄入的目标, 因此研究者们根据REs的行为表现将其分为亚型——成功的限制饮食者(SREs)和失败的限制饮食者(UREs) (Polivyet al., 2020)。根据目标冲突模型, UREs通常为了满足享受美食目标去破坏控制体重目标, 表现出去抑制进食行为; SREs则优先考虑控制体重目标, 从而即使在食物丰富的环境中也能减少热量摄入、保持体重(Keller & Siegrist, 2014)。

成功和失败的限制性饮食者的认知神经差异主要表现在注意偏向和冲突控制, 研究者从行为、眼动、脑电和神经成像等方面进行考察。首先, 在注意偏向方面, 成功和失败的限制性饮食者之间存在差异, 并表现出显著的食物信息加工的能量效应, 即UREs比SREs对高热量食物表现出更多注意偏好。例如, 对食物信息注意偏向的眼动追踪研究发现, SREs对高热量食物表现出早期的注意警觉和总体的注意回避; 而UREs对高热量食物表现出早期的注意警觉、回避和总体的注意维持, 即UREs对高热量食物信息注意更多(张雪萌 等, 2016)。

其次, 在冲突抑制方面, 由于大量注意资源投入到美味食物信息, 研究者们认为UREs比SREs在食物选择任务中经历的享受美食-控制体重两种目标之间的冲突更少。已有一些眼动、ERP和神经成像研究考察UREs和SREs的冲突控制差异。例如, 在眼动研究中, 通过比较选择食物时的反应时和目光转换指标, 发现UREs比SREs反应更快、目光转换更少, 即经历更少冲突(Zhang et al., 2019)。这种认知冲突差异的神经基础已经得到了来自rs-fMRI和ERP的证据支持。例如, UREs比SREs在抑制控制脑区(顶下叶)ReHo降低; 冲突监控脑区(前扣带皮层)激活降低; 冲突监测和抑制控制脑区(尤其额顶叶网络)的关联性较弱(Zhang et al., 2020)。ERP研究也支持了成功和失败REs在冲突监控和抑制控制上的差异, 即在食物go/no-go任务中, SREs的no-go N2a波幅大于UREs (Liu et al., 2020)。

此外, 我们进一步探讨了消极情绪对UREs和SREs冲突控制的影响。例如, 在食物go/no-go任务中, 与中性情绪状态相比, SREs和UREs在消极情绪状态下都诱发更大的N2a波幅, 表明消极情绪状态可能干扰人们的冲突监测和抑制控制能力。此外, 在消极情绪状态下, 只有SREs的no-go P3波幅显著降低, 表明SREs对食物的抑制控制能力可能增强, 因此SREs即使在消极情绪状态下也可能抑制外界食物线索带来的进食欲望, 而URE则无法抑制食欲(Liu et al., 2020)。可见, 消极情绪影响了成功和失败限制性饮食者的冲突控制, 并表现出不同的抑制控制能力。

因此, 成功和失败的限制性饮食者的认知神经表现差异或许可以解释他们的节食行为是否成功, 具体表现为在行为和神经指标上, 即UREs比SREs对高热量食物有更多注意偏好, 且冲突监测和抑制控制能力较弱。同时, 消极情绪也是干扰节食成功的关键因素之一。

3 食物渴求

食物渴求(food craving)是一种想要摄入特定食物(或食物类型)的强烈欲望, 几乎每个人都曾体验到一种或者多种的食物渴求(Kober & Mell, 2015)。虽然与酒精等具有危害后果的物质渴求相比较, 食物渴求属于相对良性的现象, 但也会在一定程度上影响健康, 例如预测暴食行为和体重变化(Kober & Boswell, 2018)。除了一般食物渴求, 国际上研究者开始探讨某些特定食物渴求, 主要集中在甜食渴求(Meule & Hormes, 2015)、碳水化合物渴求(Ma et al., 2017)等。中国饮食文化中辛辣食物是一种主要的食物类型, “嗜辣”也是一种区域性普遍现象, 国内研究者开始探讨辣食渴求的行为表现和认知神经机制。

3.1 食物渴求的认知神经研究

根据是否与暂时生理需求(如, 饥饿)有关, 食物渴求可以区分为状态和特质, 心理学研究中通常考察特质食物渴求的认知表现。特质食物渴求问卷(FCQ-t; 如“我感觉我脑子里时时刻刻都想着食物”, “有时, 吃东西让一切显得完美”等)可以测量人们在行为、认知和生理方面对一般食物渴求的特质反映(Hormes & Meule,2016)。

在认知表现上, 高食物渴求者比低渴求者对食物有更强的自动接近倾向(Brockmeyer et al., 2015); 食物渴求和特质冲动共同影响人们对食物信息的抑制控制能力(Meule & Kubler, 2014); 接触到食物线索会导致食物渴求者抑制控制能力减弱(Jones et al., 2018)。

然而, 我们对食物渴求的神经机制仍然知之甚少。许多证据表明, 食物和药物奖励有相似的神经基础(Noori et al., 2016), 一般物质渴求相关的fMRI研究发现, 海马、脑岛和尾状核的特异性激活与强烈渴求有关。在此基础上, 近期一项静息态fMRI研究考察与食物渴求相关脑区的自发神经活动。在年轻健康女性中, 采用ReHo分析评估大脑自发活动的时间同步性, 发现食物渴求与情绪记忆(海马旁回)和视觉注意处理(梭状回)ReHo激活正相关(Chen et al., 2017)。其中, 梭状回与食物视觉属性加工有关, 其激活增加符合视觉食物线索在日常食物渴求中的中心作用。此外, 海马旁回参与享乐学习和激励记忆编码, 其激活增加表明, 高特质渴求个体可能表现出更高的进食享受、对美食线索的自动反应, 以及对可口食物的更频繁的回忆; 而更频繁地回忆曾经品尝过的食物可能会加强情绪记忆, 并促进对美味食物的记忆编码。

因此, 特质食物渴求可能是由海马旁回自发活动增强的记忆回路编码的, 即强化的享乐记忆可能会使对美食的强烈渴望凌驾于体重控制目标之上。该结果与以往物质渴求研究结果一致, 表明物质渴求亚型之间具有一定的相似性。

3.2 辣食渴求的认知神经研究

以往对特定食物渴求的脑成像研究相对集中在甜食渴求等, 例如巧克力渴求者和非渴求者在OFC、ACC和腹侧纹状体对甜食的反应存在差异(Rolls & McCabe, 2007)。不同于对其他美味食物(如, 甜食)的普遍喜爱, 人们对辣食的态度跨度较大——从渴求到厌恶(Tepperet al., 2004), 因此辣食渴求者的认知神经表现应不同于其他特定食物渴求者。此外, 其他食物渴求大多危害身体健康, 如甜食摄入过度会引发肥胖及其并发病症。然而辣椒素具有多种药理作用, 如增加能量消耗(Ludy & Mattes, 2011)、具有抗菌活性、影响肠道微生物群(Qin et al., 2014), 与癌症、缺血性心脏病和呼吸系统疾病等引起的死亡率呈负相关(Lv et al., 2015)。与此同时, 中国辛辣食品的消费量较大, 尤其在西南地区, 人们普遍“嗜辣”, 且辛辣食品消费率正在上升, 超过30%的成年人每天都会食用辛辣食物(Sunet al., 2014)。因此, 研究辣食渴求现象不仅可以进一步了解食物渴求背后的机制, 也有助于提高公众健康。

为了考察中国人辣食渴求的认知神经机制, 我们编制了中国文化背景下的辣食渴求问卷(周一舟, 2018), 并展开一系列辣食渴求的神经机制研究。首先, 在一项fMRI研究中采用食物线索反应任务, 初步探索辣食渴求者的行为反应和神经回路。行为结果表明, 辣食渴求者比非渴求者对辛辣食物的反应更快。脑成像结果发现, 当暴露于含辣椒和不含辣椒的食物时, 辣食渴求者都比非渴求者在与食物和成瘾物质线索反应有关的脑区中表现出更高的激活, 具体表现为奖赏(如, 脑岛、壳核)、抑制控制(如, ACC)、视觉注意(如, 顶下小叶、舌回、楔前叶、梭状回)相关脑区激活增强。同时, 在辣食渴求者中, 这些脑区(如, 脑岛、壳核ACC、楔前叶)的β值变化与主观辣食渴求呈正相关; 右顶叶下小叶β值的变化与辣食的摄入频率相关(zhouet al., 2019)。一方面, 与一般食物渴求研究结果一致, 辣食渴求与食物奖励、抑制控制和与视觉加工有关。另一方面, 该研究中关于脑岛和顶下小叶的特异性激活更有助于我们理解辣食渴求者的神经机制。其中, 脑岛在监测身体内部状态方面起着重要作用, 脑岛激活增强可能反映了辣食渴求者在主观上经历的躯体化和内在感受过程(Sutherland et al., 2012); 顶下小叶是注意网络的核心节点, 也与对条件线索的注意偏差有关, 并可能导致对线索的自动反应(Claus et al., 2013), 表明辣食渴求者对辣食的偏好反应可能反映了对辣食线索的注意分配更多。

此外, 采用go/no-go任务结合ERP技术探讨辣食渴求者的抑制控制, 结果发现在辣食线索中, 辣食渴求者的N2b和P3波幅都显著小于非渴求者, N2a没有差异; 而在一般线索中, ERP成分没有组间差异(王健美 等, 2020)。N2a无差异而N2b差异显著可能表明, 两组群体对辣食线索的早期认知资源投入相似, 但是辣食渴求者对辣食刺激有着更多的注意察觉。辣食渴求者的P3波幅更小表明他们对辣食线索的抑制控制能力更差。然而, 辣食渴求只对特定食物的抑制控制产生影响, 而不会影响一般抑制控制能力。

综上所述, 一方面这些探索性发现符合一般食物渴求研究结果(Geliebter et al., 2016), 从辣食渴求的角度支持了背侧纹状体、ACC和脑岛是食物渴求的基础。也与食物渴求的自动行为倾向解释相一致(Brockmeyer et al., 2015), 即辣食渴求者对辣食线索的自动行为倾向增强。另一方面, 在辣食渴求者抑制控制的结果中也显示出不同于其他物质渴求者的特点。虽然感觉不受控是食物渴求和物质渴求共同的显著特征(Goldstein, 2018), 辣食渴求者在辣食线索中也表现出抑制控制能力减弱, 但是他们对一般线索没有形成这种不受控的认知神经表现。

4 小结和展望

本文总结了中国文化背景下的限制性饮食和食物渴求的认知神经机制研究。近几年, 国内研究者在饮食行为心理机制领域的探讨比较前沿和深入。随着当代中国社会中与节食和暴食有关的健康问题和隐患日益凸显, 未来研究需从更全面视角探索限制性饮食和食物渴求的认知神经表现, 开发行之有效的干预方案, 缓解当前社会中节食、暴食等不健康问题。

第一, 国内外研究发现限制性饮食者反而容易吃得更多, 即去抑制进食。国内学者在中国文化背景下, 拓展了这种反向调节作用认知神经证据。即, 基于享受美食-控制体重的目标冲突模型, 发现限制性饮食者的冲突控制能力较弱; 通过脑成像研究发现限制性饮食者奖赏-抑制相关脑区的改变。未来研究应考察健康青少年及成人以外的其他群体, 如厌食症、暴食症等饮食失调者, 尤其是处于重要发展阶段的儿童。

第二, 通过区分限制性饮食者的亚型——成功和失败的限制性饮食者, 国内学者发现了节食成功与否的关键在于抑制控制及其相关脑区的变化。因此, 根据成功和失败限制性饮食者的认知神经表现差异, 未来可以开发并检验更有效的饮食行为干预方案, 服务于大众身心健康。

第三, 食物渴求者对食物存在自动接近倾向, 并对食物的抑制控制能力更弱。食物渴求者的大脑激活与其他物质渴求研究结果具有相似性, 但是与其他危害性较强的物质渴求(如, 吸烟、饮酒、毒品等)相比, 食物渴求的危害性较小。因此, 食物渴求和其他物质渴求之间的相似和差异表现有待未来研究进行更具体地识别和区分。

第四, “嗜辣”是中国饮食文化中的特色之一, 尤其是西南地区。当前研究表明, 辣食渴求者只在辛辣食物中表现出抑制控制能力减弱以及相关脑区的变化, 在其他线索中的抑制控制未受损。然而, 中国人辣食渴求的研究刚刚兴起, 研究结果仍然需要进一步证据的支持。未来有必要开展跨区域和跨文化的研究。

参考文献

[1]

王健美, 刘永, 周一舟, 张露露, 尹明, 杨润澜, 陈红. (2020).

辣食渴求者抑制控制能力的行为和ERP研究

心理科学, 43(1), 150-157.

[本文引用: 1]

[2]

王劭睿, 陈红. (2019).

为何越减越肥?——限制性饮食者过度进食的心理机制及影响因素

心理科学进展, 27(2), 322-328.

[本文引用: 1]

[3]

张雪萌, 陈红, 高笑, 江沂芯, 周一舟. (2016).

成功与失败限制性饮食者对食物加工的能量效应:注意偏向的眼动追踪

心理科学, 39(4), 956-963.

[本文引用: 1]

[4]

周一舟. (2018). “辣食渴求者”线索反应的生理及神经机制 (博士学位论文). 西南大学, 重庆.

[本文引用: 1]

[5]

Brockmeyer, T., Hahn, C., Reetz, C., Schmidt, U., & Friederich, H.-C. (2015).

Approach bias and cue reactivity towards food in people with high versus low levels of food craving

Appetite, 95, 197-202.

DOI:10.1016/j.appet.2015.07.013    PMID:26184338     [本文引用: 2]

Even though people suffering from high levels of food craving are aware of the negative consequences of binge eating, they cannot resist. Automatic action tendencies (i.e. approach bias) towards food cues that operate outside conscious control may contribute to this dysfunctional behavior. The present study aimed to examine whether people with high levels of food craving show a stronger approach bias for food than those with low levels of food craving and whether this bias is associated with cue-elicited food craving.Forty-one individuals reporting either extremely high or extremely low levels of trait food craving were recruited via an online screening and compared regarding approach bias towards visual food cues by means of an implicit stimulus-response paradigm (i.e. the Food Approach-Avoidance Task). State levels of food craving were assessed before and after cue exposure to indicate food cue reactivity.As expected, high food cravers showed stronger automatic approach tendencies towards food than low food cravers. Also in line with the hypotheses, approach bias for food was positively correlated with the magnitude of change in state levels of food craving from pre-to post-cue exposure in the total sample.The findings suggest that an approach bias in early stages of information processing contributes to the inability to resist food intake and may be of relevance for understanding and treating dysfunctional eating behavior.Copyright © 2015 Elsevier Ltd. All rights reserved.

[6]

Chen, S., Dong, D., Jackson, T., Su, Y., & Chen, H. (2016).

Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters

Neuropsychologia, 81, 22-30.

DOI:10.1016/j.neuropsychologia.2015.06.036    URL     [本文引用: 1]

[7]

Chen, S., Dong, D., Jackson, T., Zhuang, Q., & Chen, H. (2017).

Trait-based food-cravings are encoded by regional homogeneity in the parahippocampal gyrus

Appetite, 114, 155-160.

DOI:10.1016/j.appet.2017.03.033    URL     [本文引用: 1]

[8]

Chen, S., Jackson, T., Dong, D., Zhuang, Q., & Chen, H. (2019).

Effects of palatable food versus thin figure conflicts on responses of young dieting women

Frontiers in Psychology, 10..

[本文引用: 2]

[9]

Chen, S., Jia, Y., & Woltering, S. (2018).

Neural differences of inhibitory control between adolescents with obesity and their peers

International Journal of Obesity, 42(10), 1753-1761.

DOI:10.1038/s41366-018-0142-x    URL     [本文引用: 1]

[10]

Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013).

Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity

Neuropsychopharmacology, 38(12), 2363-2372.

DOI:10.1038/npp.2013.134    PMID:23708507     [本文引用: 1]

Enhanced motivational salience towards smoking cues is a consequence of chronic nicotine use, but the degree to which this value increases beyond that of other appetitive cues is unknown. In addition, it is unclear how connectivity between brain regions influences cue reactivity and how cue reactivity and functional connectivity are related to nicotine dependence severity. This study examined neural responses during the presentation of smoking cues and appetitive control cues, as well as functional connectivity in 116 smokers with a range of nicotine dependence severity. Smoking cues elicited greater response above baseline than food cues in orbitofrontal cortex (OFC) and supplementary motor area (SMA) and less deactivation below baseline in middle frontal gyrus, inferior parietal lobe, and middle temporal gyrus. Psychophysiological interaction (PPI) analysis using right OFC as a seed revealed increased connectivity with somatosensory cortex and lateral inferior parietal lobe during smoking cues compared with food cues. Similarly, a PPI analysis using left insula as a seed showed stronger connectivity with somatosensory cortex, right insula, OFC, and striatum. Finally, relationships with nicotine dependence scores showed enhanced response in insula and dorsal anterior cingulate cortex in the smoking vs food comparison, and increased connectivity between insula and circuits involved in motivated behavior. Combined, these results suggest that smokers engage attentional networks and default mode networks involved in self-referential processing to a greater degree during smoking cues. In addition, individuals with greater nicotine dependence severity show increased engagement of sensorimotor and motor preparation circuits, suggesting increased reliance on habitual behavior.

[11]

Dong, D., Jackson, T., Wang, Y., & Chen, H. (2015).

Spontaneous regional brain activity links restrained eating to later weight gain among young women

Biological Psychology, 109, 176-183.

DOI:10.1016/j.biopsycho.2015.05.003    URL     [本文引用: 2]

[12]

Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., & Chen, H. (2014).

Altered regional homogeneity and efficient response inhibition in restrained eaters

Neuroscience, 266, 116-126.

DOI:10.1016/j.neuroscience.2014.01.062    PMID:24513387     [本文引用: 1]

Restrained eaters (REs) characterized by less efficient response inhibition are at risk for future onset of binge eating and bulimic pathology. Previous imaging studies investigating REs have been based on task-related functional magnetic resonance imaging (fMRI) and little is known about resting-state neural activity underlying restrained eating. To illuminate this issue, we investigated resting-state fMRI differences between REs (n=22) and unrestrained eaters (UREs) (n=30) using regional homogeneity (ReHo) analysis, which measures the temporal synchronization of spontaneous fluctuations. Samples were equated on body mass index (BMI) and caloric deprivation levels (i.e., 14±2.1h since last evening meal) before undergoing fMRI. Correlation analyses were performed between the ReHo index of identified regions and response inhibition based on stop-signal reaction time (SSRT) within each sample. Compared with UREs, REs showed more ReHo in brain regions associated with food reward (i.e., orbitofrontal cortex (OFC), dorsal-lateral prefrontal cortex (dlPFC)), attention (i.e., lingual gyrus, cuneus, inferior parietal lobule) and somatosensory functioning (i.e., paracentral lobule, anterior insula). In addition, ReHo values for the left dlPFC and left anterior insula, respectively, were negatively and positively correlated with SSRT among REs but not UREs. In concert with previous studies, these results suggest altered local synchronization may help to explain why dieting to maintain or lose weight often fails or increases risk for binge eating among REs. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

[13]

Geliebter, A., Benson, L., Pantazatos, S. P., Hirsch, J., & Carnell, S. (2016).

Greater anterior cingulate activation and connectivity in response to visual and auditory high-calorie food cues in binge eating: Preliminary findings

Appetite, 96, 195-202.

DOI:S0195-6663(15)00375-X    PMID:26275334     [本文引用: 1]

Obese individuals show altered neural responses to high-calorie food cues. Individuals with binge eating [BE], who exhibit heightened impulsivity and emotionality, may show a related but distinct pattern of irregular neural responses. However, few neuroimaging studies have compared BE and non-BE groups. To examine neural responses to food cues in BE, 10 women with BE and 10 women without BE (non-BE) who were matched for obesity (5 obese and 5 lean in each group) underwent fMRI scanning during presentation of visual (picture) and auditory (spoken word) cues representing high energy density (ED) foods, low-ED foods, and non-foods. We then compared regional brain activation in BE vs. non-BE groups for high-ED vs. low-ED foods. To explore differences in functional connectivity, we also compared psychophysiologic interactions [PPI] with dorsal anterior cingulate cortex [dACC] for BE vs. non-BE groups. Region of interest (ROI) analyses revealed that the BE group showed more activation than the non-BE group in the dACC, with no activation differences in the striatum or orbitofrontal cortex [OFC]. Exploratory PPI analyses revealed a trend towards greater functional connectivity with dACC in the insula, cerebellum, and supramarginal gyrus in the BE vs. non-BE group. Our results suggest that women with BE show hyper-responsivity in the dACC as well as increased coupling with other brain regions when presented with high-ED cues. These differences are independent of body weight, and appear to be associated with the BE phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

[14]

Goldstein, R. (2018).

9. Cue-induced incubation of craving in human cocaine addiction: Modulation by reappraisal

Biological Psychiatry, 83(9), S3-S4.

[本文引用: 1]

[15]

Hormes, J. M., & Meule, A. (2016).

Psychometric properties of the English Food Cravings Questionnaire-Trait-reduced (FCQ-T-r)

Eating Behaviors, 20, 34-38.

DOI:10.1016/j.eatbeh.2015.11.011    PMID:26609669     [本文引用: 1]

Food cravings have been implicated in the development and maintenance of a range of eating- and weight-related pathology. The rapid and accurate assessment of food cravings is thus critical in clinical and research settings. Existing measures of specific food cravings are often not suitable for capturing the multiple facets of the craving experience. A short version of the Food Cravings Questionnaire-Trait (FCQ-T), the most widely used measure of general food cravings, was recently developed in German and shown to be a one-factorial, internally reliable measure. Other recent studies validated an Italian and Spanish version of the FCQ-T-reduced (FCQ-T-r) and successfully replicated its basic psychometrics. This study sought to examine the psychometric properties of the English version of the FCQ-T-r. Undergraduate students (n=610, 51.0% female, 53.9% white/Caucasian) completed a battery of questionnaires containing the FCQ-T-r and measures of specific food cravings, eating style, eating disorder symptoms, weight dissatisfaction, and impulsivity. Even though results of a confirmatory factor analysis suggested poor fit with a one-factorial model, the FCQ-T-r was found to be a one-factorial measure in both principal component and parallel analysis. The FCQ-T-r demonstrated excellent internal consistency reliability (Cronbach's α=.94), and scores were significantly and positively correlated with measures of specific food cravings, restrained eating, eating disorder symptoms, and impulsivity. More work is needed to confirm the factor structure of the English FCQ-T-r, but preliminary findings suggest that it constitutes a valid and reliable alternative to lengthier measures of general food cravings. Copyright © 2015 Elsevier Ltd. All rights reserved.

[16]

Jones, A., Robinson, E., Duckworth, J., Kersbergen, I., Clarke, N., & Field, M. (2018).

The effects of exposure to appetitive cues on inhibitory control: A meta-analytic investigation

Appetite, 128, 271-282.

DOI:10.1016/j.appet.2018.06.024    URL     [本文引用: 1]

[18]

Kober, H., & Boswell, R. G. (2018).

Potential psychological & neural mechanisms in binge eating disorder: Implications for treatment

Clinical Psychology Review, 60, 32-44.

DOI:S0272-7358(17)30190-3    PMID:29329692     [本文引用: 1]

Binge Eating Disorder (BED) is a newly-established eating disorder diagnosis in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although systematic research on BED is in its infancy and many studies feature small samples, several observations emerge. First, we review diagnostic, developmental, and socio-demographic features of BED. Next, although BED and obesity are linked and frequently co-occur, we review data suggesting that BED is a distinct phenotype. Importantly, we take a mechanism-focused approach and propose four psychological processes with neurobiological bases that may uniquely differentiate BED from obesity: emotion reactivity, food-cue reactivity, food craving, and cognitive control. Further, we propose that interactions between impairments in cognitive control and increased emotional reactivity, food-cue reactivity, and craving may underlie emotion dysregulation and promote binge eating. Consistently, neuroimaging studies point towards neural alterations in the response to rewards and to food specifically, and suggest preliminary links between impaired cognitive-control-related neural activity and binge eating. However, additional systematic work is required in this area. We conclude with a detailed review of treatment approaches to BED; specifically, we suggest that psychological and pharmacological treatments that target core mechanisms - including cognitive control and emotion/craving dysregulation - may be particularly effective.Copyright © 2018 Elsevier Ltd. All rights reserved.

[19]

Kober, H., & Mell, M. M. (2015).

Neural mechanisms underlying craving and the regulation of craving

The Wiley Handbook on the Cognitive Neuroscience of Addiction, 195-218.

[本文引用: 1]

[20]

Kong, F., Zhang, Y., & Chen, H. (2015).

Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task

PLos ONE, 10(4), 741-752.

[本文引用: 1]

[21]

Liu, Y., Zhang, L., Jackson, T., Wang, J., Yang, R., & Chen, H. (2020).

Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task

Behavioural Brain Research, 377, 112249.

DOI:10.1016/j.bbr.2019.112249    URL     [本文引用: 2]

[22]

Ludy, M.-J., & Mattes, R. D. (2011).

The effects of hedonically acceptable red pepper doses on thermogenesis and appetite

Physiology & Behavior, 102(3-4),251-258.

[本文引用: 1]

[23]

Lv, J., Qi, L., Yu, C., Yang, L., Guo, Y., Chen, Y., ... Li, L. (2015).

Consumption of spicy foods and total and cause specific mortality: Population based cohort study

The British Medical Journal, 351, h3942.

[本文引用: 1]

[24]

Ma, Y., Ratnasabapathy, R., & Gardiner, J. (2017).

Carbohydrate craving: Not everything is sweet

Current Opinion in Clinical Nutrition and Metabolic Care, 20(4), 261-265.

DOI:10.1097/MCO.0000000000000374    URL     [本文引用: 1]

[25]

Meule, A., & Hormes, J. M. (2015).

Chocolate versions of the Food Cravings Questionnaires. Associations with chocolate exposure-induced salivary flow and ad libitum chocolate consumption

Appetite, 91, 256-265.

DOI:10.1016/j.appet.2015.04.054    URL     [本文引用: 1]

[26]

Meule, A., & Kubler, A. (2014).

Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition

Appetite, 79, 174-182.

DOI:10.1016/j.appet.2014.04.014    URL     [本文引用: 1]

[27]

Noori, H. R., Linan, A. C., & Spanagel, R. (2016).

Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis

European Neuropsychopharmacology, 26(9), 1419-1430.

DOI:10.1016/j.euroneuro.2016.06.013    URL     [本文引用: 1]

[28]

Pires, L., Leitão, J., Guerrini, C., & Simões, M. R. (2014).

Event-related brain potentials in the study of inhibition: Cognitive control, source localization and age-related modulations

Neuropsychological Review, 24(4), 461-490.

DOI:10.1007/s11065-014-9275-4    URL     [本文引用: 1]

[29]

Polivy, J., Herman, C. P., & Mills, J. S. (2020).

What is restrained eating and how do we identify it

Appetite, 155, 104802.

[本文引用: 2]

[30]

Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., ... Li, L. (2014).

Alterations of the human gut microbiome in liver cirrhosis

Nature, 513(7516), 59-64.

DOI:10.1038/nature13568    URL     [本文引用: 1]

[31]

Rolls, E. T., & McCabe, C. (2007).

Enhanced affective brain representations of chocolate in cravers vs. non-cravers

European Journal of Neuroscience, 26(4), 1067-1076.

DOI:10.1111/j.1460-9568.2007.05724.x    URL     [本文引用: 1]

[32]

Schaumberg, K., Anderson1, D. A., Anderson, L. M., Reilly, E. E., & Gorrell, S. (2016).

Dietary restraint: What's the harm? A review of the relationship between dietary restraint, weight trajectory and the development of eating pathology

Clinical Obesity, 6, 89-100.

DOI:10.1111/cob.12134    URL     [本文引用: 1]

[33]

Song, S., Zhang, Y., Qiu, J., Li, X., Ma, K., Chen, S., & Chen, H. (2019).

Brain structures associated with eating behaviors in normal-weight young females

Neuropsychologia, 133, 107171.

DOI:10.1016/j.neuropsychologia.2019.107171    URL     [本文引用: 1]

[34]

Stopyra, M. A., Simon, J. J., Skunde, M., Walther, S., Bendszus, M., Herzog, W., & Friederich, H. C. (2019).

Altered functional connectivity in binge eating disorder and bulimia nervosa: A resting-state fmri study

Brain and Behavior, 9(2), e01207.

DOI:10.1002/brb3.2019.9.issue-2    URL     [本文引用: 1]

[35]

Stroebe, W., van Koningsbruggen, G. M., Papies, E. K., & Aarts, H. (2013).

Why most dieters fail but some succeed: A goal conflict model of eating behavior

Psychological Review, 120(1), 110-138.

DOI:10.1037/a0030849    URL     [本文引用: 1]

[36]

Su, Y., Jackson, T., Wei, D., Qiu, J., & Chen, H. (2017).

Regional gray matter volume is associated with restrained eating in healthy Chinese young adults: Evidence from voxel-based morphometry

Frontiers in Psychology, 8, 443.

[本文引用: 1]

[37]

Sun, D., Lv, J., Chen, W., Li, S., Guo, Y., Bian, Z., ... Li, L. (2014).

Spicy food consumption is associated with adiposity measures among half a million Chinese people: The China kadoorie biobank study

BMC Public Health, 14(1), 1293.

DOI:10.1186/1471-2458-14-1293    URL     [本文引用: 1]

[38]

Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012).

Resting state functional connectivity in addiction: Lessons learned and a road ahead

NeuroImage, 62(4), 2281-2295.

DOI:10.1016/j.neuroimage.2012.01.117    PMID:22326834     [本文引用: 1]

Despite intensive scientific investigation and public health imperatives, drug addiction treatment outcomes have not significantly improved in more than 50 years. Non-invasive brain imaging has, over the past several decades, contributed important new insights into the neuroplastic adaptations that result from chronic drug intake, but additional experimental approaches and neurobiological hypotheses are needed to better capture the totality of the motivational, affective, cognitive, genetic and pharmacological complexities of the disease. Recent advances in assessing network dynamics through resting-state functional connectivity (rsFC) may allow for such systems-level assessments. In this review, we first summarize the nascent addiction-related rsFC literature and suggest that in using this tool, circuit connectivity may inform specific neurobiological substrates underlying psychological dysfunctions associated with reward, affective and cognitive processing often observed in drug addicts. Using nicotine addiction as an exemplar, we subsequently provide a heuristic framework to guide future research by linking recent findings from intrinsic network connectivity studies with those interrogating nicotine's neuropharmacological actions. Emerging evidence supports a critical role for the insula in nicotine addiction. Likewise, the anterior insula, potentially together with the anterior cingulate cortex, appears to pivotally influence the dynamics between large-scale brain networks subserving internal (default-mode network) and external (executive control network) information processing. We suggest that a better understanding of how the insula modulates the interaction between these networks is critical for elucidating both the cognitive impairments often associated with withdrawal and the performance-enhancing effects of nicotine administration. Such an understanding may be usefully applied in the design and development of novel smoking cessation treatments.Published by Elsevier Inc.

[39]

Tepper, B. J., Keller, K. L., & Ullrich, N. V. (2004). Genetic variation in taste and preferences for bitter and pungent foods: Implications for chronic disease risk(pp.60-74). Challenges in Taste Chemistry and Biology.

[本文引用: 1]

[40]

Wang, Y., Dong, D., Jackson, T., Jie, D., Zhou, Y., Hui, L., & Chen, H. (2016).

Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study

Neuroscience Letters, 631, 56-62.

DOI:S0304-3940(16)30588-2    PMID:27524674     [本文引用: 2]

Many studies have reported that specific susceptibility to food cues plays an important role in disordered eating behavior. However, whether restraint status modulates the neural bases of attentional bias to different types of food cues remains unknown. Thus, functional magnetic resonance imaging (fMRI) was conducted in individuals (12 restraint eaters, 12 unrestraint eaters) exposed to high/low-energy food and neutral images while performing a two-choice oddball task. The results indicated that restrained eaters responded more quickly to high-energy food images than to neutral and low-energy food images. More notably, compared with unrestrained eaters, restrained eaters showed faster reaction times, hyper-activation in a much wider array of reward (e.g., insula/orbitofrontal cortex), attention (superior frontal gyrus) and visual processing (e.g., superior temporal gyrus) regions, and hypo-activation in cognitive control areas (e.g., anterior cingulate) in response to high-energy food cues. Furthermore, among restrained eaters, the longest reaction times were found for low-energy food images, and activation of the attention and visual-related cortex (e.g., superior parietal gyrus) in the low-neutral contrast condition was significantly stronger than in unrestrained eaters. These findings contribute to our understanding of susceptibility to food cues: in addition to the special sensitivity (attentional bias) to high-energy food images, restrained eaters may also be more sensitive (allocate more attentional resources) to low-energy food images. These potential neural bases of restrained eaters may help clarify why dieting to lose or maintain weight is so often unsuccessful. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

[41]

Weygandt, M., Mai, K., Dommes, E., Ritter, K., Leupelt, V., Spranger, J., & Haynes, J.-D. (2015).

Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity

NeuroImage, 109, 318-327.

DOI:10.1016/j.neuroimage.2014.12.073    PMID:25576647     [本文引用: 1]

A variety of studies suggest that efficient treatments to induce short-term dietary success in obesity exist. However, sustained maintenance of reduced weight is rare as a large proportion of patients start to regain weight when treatment is discontinued. Thus, from a clinical perspective, it would be desirable to identify factors that counteract post-diet weight regain across longer time-scales. To address this question, we extended our previous work on neural impulse control mechanisms of short-term dietary success in obesity and now investigated the mechanisms counteracting long-term weight regain after a diet. Specifically, we measured neural impulse control during a delay discounting task with fMRI at two time points, i.e. the beginning ('T0') and the end ('T12') of a one-year follow-up interval after a 12-week diet. Then, we tested whether activity in the dorsolateral prefrontal cortex (DLPFC) at T0 and whether activity changes across the follow-up period (T0-T12) are linked to success in weight maintenance. The analyses conducted show that control-related DLPFC activity at T0 was coupled to the degree of success in weight maintenance. Consistently, also behavioral measures of control were linked to the degree of success in maintenance. A direct comparison of neural and behavioral control parameters for prognostic weight change modeling revealed that neural signals were more informative. Taken together, neural impulse control in the DLPFC measured with fMRI directly after a diet predicts real-world diet success in obese patients across extended time periods. Copyright © 2015 Elsevier Inc. All rights reserved.

[42]

Yao, L., Li, W., Dai, Z., & Dong, C. (2016).

Eating behavior associated with gray matter volume alternations: A voxel based morphometry study

Appetite, 96, 572-579.

DOI:10.1016/j.appet.2015.10.017    URL     [本文引用: 1]

[43]

Zhang, X., Luo, Y., Liu, Y., Yang, C., & Chen, H. (2019).

Lack of conflict during food choice is associated with the failure of restrained eating

Eating Behaviors, 34, 101309.

DOI:10.1016/j.eatbeh.2019.101309    URL     [本文引用: 2]

[44]

Zhang, Y., Wang, S., Wei, L., Jackson, T., Gao, X., Xiao, M. Y., ... Chen, H. (2020).

Resting state differences between successful and unsuccessful restrained eaters

Brain Imaging and Behavior, 6.

[本文引用: 1]

[45]

Zhou, Y., Gao, X., Small, D. M., & Chen, H. (2019).

Extreme spicy food cravers displayed increased brain activity in response to pictures of foods containing chili peppers: An fMRI study

Appetite, 142, 104379.

DOI:10.1016/j.appet.2019.104379    URL     [本文引用: 2]

[46]

Zhou, Y., Liu, Y., Du, J., & Chen, H. (2018).

Effects of food exposure on food-related inhibitory control in restrained eaters: An ERP study

Neuroscience Letters, 672, 130-135.

DOI:10.1016/j.neulet.2018.02.048    URL     [本文引用: 2]

相关知识

心理学部教授团队在Appetite发文揭示超重肥胖人群食物相关抑制控制的神经机制
控制热量 or 间歇性禁食,哪个更好?最新Nature:热量限制和饮食限制有不同减肥、延寿效果,遗传对寿命的影响始终大于饮食控制
要限制糖尿病人的饮食
神经性厌食症
植物性食品原料安全的控制概述
热量限制
饮食有节制可以让人更长寿
渴望性爱=“老不正经”?
怎么控制饮食减肥
有机认证,中国有机食品认证网

网址: 中国人限制性饮食和食物渴求的认知神经机制 https://m.trfsz.com/newsview171764.html