首页 > 资讯 > 低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善

低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善

摘要: 为探究低聚半乳糖对植物乳杆菌发酵乳特性及抗菌活性的影响,本文采用单因素法考察影响发酵乳特性的主要因素,并以响应面法优化发酵乳最佳发酵条件;以产肠毒素蜡样芽孢杆菌HN001为指示菌,探究低聚半乳糖的添加对植物乳杆菌ZDY2013发酵乳抑菌活性的改善作用。结果表明:植物乳杆菌能有效利用低聚半乳糖进行体外代谢,并抑制蜡样芽孢杆菌生长;牛奶中添加适量低聚半乳糖能够增加植物乳杆菌发酵乳中的活菌数、降低发酵乳的pH,并提高其持水力;响应面分析发现低聚半乳糖发酵乳的最佳制备条件为:2.0%的植物乳杆菌接种量、1.0%的低聚半乳糖添加量、发酵时间为24 h及发酵温度为42 ℃;添加低聚半乳糖的发酵乳能有效控制产肠毒素蜡样芽孢杆菌浓度在106 CFU/mL以下。该研究结果为低聚半乳糖及植物乳杆菌ZDY2013在发酵乳中的应用奠定了理论基础。

Abstract: In order to test the effect of galactooligosaccharide (GOS) on the characterization and antibacterial activity of milk fermented by Lactobacillus plantarum, the main factors affecting the fermented milk were investigated and the most suitable fermentation conditions for improving the characterization of fermented milk were obtained with response surface analysis. The enterotoxigenic Bacillus cereus HN001 was used as an indicator to study the effect of GOS addition on the antibacterial activity of L. plantarum ZDY2013 fermented milk. The results showed that L. plantarum could use GOS for metabolism in vitro and inhibit the growth of B. cereus effectively. The proper addition of GOS in milk could increase the number of viable bacteria, reduce the pH and enhance the water holding capacity of L. plantarum fermented milk. The result from response surface analysis was found that the best fermentation conditions for fermented milk were 2.0% inoculums of L. plantarum, 1.0% GOS, fermented at 42 ℃ for 24 h. Additionally, GOS addition in fermented milk could effectively control the concentration of enterotoxigenic B. cereus HN001 to below 106 CFU/mL. The results of this study provide the foundation for the application of GOS and L. plantarum ZDY2013 in fermented milk.

图  1   低聚半乳糖对植物乳杆菌ZDY2013生长代谢的影响

注:*表示P<0.05。

Figure  1.   Effect of GOS on the metabolism of L. plantarum ZDY2013

图  2   植物乳杆菌利用改良培养基发酵的抑菌能力

Figure  2.   The antibacterial ability of L. plantarum fermented with modified media

图  3   不同菌液接种量对植物乳杆菌发酵乳特性的影响

注:#不同接种量间的比较,*相同接种量间的比较;#,*表示P<0.05,##,**表示P<0.01,###,***表示P<0.001;####,****表示P<0.0001;图4~图6同。

Figure  3.   Effect of different inoculation amount on the characterization of L. plantarum fermented milk

图  4   不同浓度低聚半乳糖对植物乳杆菌发酵乳特性的影响

Figure  4.   Effect of different concentration of GOS on the characterization of L. plantarum fermented milk

图  5   发酵时间对植物乳杆菌发酵乳特性的影响

Figure  5.   Effect of fermentation time on the characterization of L. plantarum fermented milk

图  6   发酵温度对植物乳杆菌发酵乳特性的影响

Figure  6.   Effect of fermentation temperature on the characterization of L. plantarum fermented milk

图  7   不同因素对发酵乳活菌数的交互影响

Figure  7.   The interactive influence of different factors on viable bacteria counts of fermented milk

图  8   低聚半乳糖发酵乳对蜡样芽孢杆菌的抑制作用

注:****表示P<0.0001。

Figure  8.   Inhibition of GOS fermented milk on B. cereus

表  1   Box-Behnken试验因素与水平

Table  1   Factors and levels of Box-Behnken test

因素水平-101 X1接种量(%)123X2糖浓度(%)123X3发酵时间(h)122436X4发酵温度(℃)323742

表  2   Box-Behnken试验设计与结果

Table  2   Design and results of Box-Behnken test

实验号X1X2X3X4活菌数(lg CFU/mL) 11124378.6523124378.7931324378.9343324378.8252212328.5162236328.5872212427.9582236428.0491224328.70103224328.74111224428.18123224428.21132112378.39142312378.63152136378.51162336378.57171212377.97183212378.34191236378.78203236378.99212124328.69222324328.77232124428.17242324428.22252224378.67262224378.78272224378.97282224378.67292224378.63

表  3   回归方程的方差分析

Table  3   Variance analysis of regression equation

方差来源偏差平方和自由度均方F值P值显著性 模型2.02140.144.560.0038**X10.03910.0391.220.2886X20.04610.0461.440.2499X30.2410.247.430.0164*X40.8610.8627.280.0001***X1X20.01610.0160.490.4940X1X30.006410.00640.200.6599X1X40.00002510.0000250.00078930.9780X2X30.008110.00810.260.6209X2X40.00022510.0002250.0071040.9340X3X40.000110.00010.0031570.9560X120.000659510.00065950.0210.8873X220.00147610.0014760.0470.8322X320.3110.319.910.0071**X420.5210.5216.340.0012**残差0.44140.0320.0080失拟项0.37100.371.920.2764纯误差0.07640.019总和2.4728 注:*表示P<0.05;**表示P<0.01;***表示P<0.001。 [1]

MARKOWIAK P, SLIZEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients,2017,9(9):1−30.

[2] 曹振辉, 刘永仕, 潘洪彬, 等. 乳酸菌的益生功能及作用机制研究进展[J]. 食品工业科技,2015,36(24):366−377. [CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry,2015,36(24):366−377.

CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry, 2015, 36(24): 366-377.

[3]

OH N S, JOUNG J Y, LEE J Y, et al. A synbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract prevents hepatic toxicity induced by colorectal cancer in mice[J]. Journal of Dairy Science,2020,103(4):2947−2955. doi: 10.3168/jds.2019-17411

[4]

SAVAIANO D A, HUTKINS R W. Yogurt, cultured fermented milk, and health: A systematic review[J]. Nutrition Reviews,2021,79(5):599−614. doi: 10.1093/nutrit/nuaa013

[5]

OAK S J, JHA R. The effects of probiotics in lactose intolerance: A systematic review[J]. Critical Reviews in Food Science Nutrition,2019,59(11):1675−1683. doi: 10.1080/10408398.2018.1425977

[6]

ZHONG Z, HU R, ZHAO J, et al. Acetate kinase and peptidases are associated with the proteolytic activity of Lactobacillus helveticus isolated from fermented food[J]. Food Microbiology,2021,94:103651.

[7] 张彦位, 路江浩, 鄢梦洁, 等. 益生菌对微生态系统的改善作用及其应用研究进展[J]. 食品工业科技,2021,42(4):369−379. [ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry,2021,42(4):369−379.

ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry, 2021, 42(4): 369-379.

[8]

HUANG H R, TAO X, WAN C X, et al. In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice[J]. Journal of Dairy Science,2015,98(9):5850−5861. doi: 10.3168/jds.2014-9153

[9]

WANG Y Y, GUO Y L, CHEN H, et al. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress[J]. Canadian Journal of Microbiology,2018,64(5):327−337. doi: 10.1139/cjm-2017-0716

[10]

ZHANG Z H, TAO X, SHAH N P, et al. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens[J]. Journal Dairy of Science,2016,99(4):2666−2674. doi: 10.3168/jds.2015-10587

[11]

ZHANG Z H, JIN M L, WANG K M, et al. Short-term intake of Lactiplantibacillus plantarum ZDY2013 fermented milk promotes homoeostasis of gut microbiota under enterotoxigenic Bacillus cereus challenge[J]. Food & Function,2021,12(11):5118−5129.

[12]

SONNENBURG E D, SONNENBURG J L. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates[J]. Cell Metabolism,2014,20(5):779−786. doi: 10.1016/j.cmet.2014.07.003

[13]

GOPAL P K, SULLIVAN P A, SMART J B. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20[J]. International Dairy Journal,2001,11(1):19−25.

[14] 薛雅莺, 袁卫涛, 杨海军. 低聚半乳糖的特性及应用前景[J]. 发酵科技通讯,2011,40(3):50−52. [XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology,2011,40(3):50−52. doi: 10.3969/j.issn.1674-2214.2011.03.020

XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology, 2011, 40(3): 50-52. doi: 10.3969/j.issn.1674-2214.2011.03.020

[15]

MA C C, WASTI S, HUANG S, et al. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide[J]. Gut Microbes,2020,12(1):1785252. doi: 10.1080/19490976.2020.1785252

[16] 孙思睿, 张晟, 孟祥晨. 低聚半乳糖对植物乳杆菌生长及部分代谢的影响[J]. 食品工业科技,2017,38(17):95−98. [SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry,2017,38(17):95−98.

SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2017, 38(17): 95-98.

[17]

AZAGRA B I, MASSOT C M, KNIPPING K, et al. Supplementation with 2'-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats[J]. Front Cell Infect Microbiol,2018,8:372. doi: 10.3389/fcimb.2018.00372

[18]

SUN J W, LIANG W X, YANG X F, et al. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b[J]. Life Sciences,2019,231:116589.

[19]

HASLE G, RAASTAD R, BJUNE G, et al. Can a galacto-oligosaccharide reduce the risk of traveller's diarrhoea? A placebo-controlled, randomized, double-blind study[J]. Journal of Travel Medicine,2017,24(5):1−9.

[20]

KWON J I, PARK Y, NOH D O, et al. Complex-oligosaccharide composed of galacto-oligosaccharide and lactulose ameliorates loperamide-induced constipation in rats[J]. Food Science and Biotechnology,2018,27(3):781−788. doi: 10.1007/s10068-017-0300-2

[21]

KIM M G, JO K Y, CHANG Y B, et al. Changes in the gut microbiome after galacto-oligosaccharide administration in loperamide-induced constipation[J]. Journal of Personalized Medicine,2020,10(4):1−15.

[22]

CHU H Q, TAO X, SUN Z G, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway[J]. Life Sciences,2020,242:117220.

[23]

SEIJO M, BONANNO M S, VENICA C I, et al. A yoghurt containing galactooligosaccharides and having low-lactose level improves calcium absorption and retention during growth: Experimental study[J]. International Journal of Food Science & Technology,2021,57(1):48−56.

[24] 张娜, 占英, 孟迎平, 等. 功能低聚糖对植物乳杆菌ZDY2013发酵乳发酵特性及冷藏效果的影响[J]. 现代食品科技,2021,37(11):34−42. [ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 fermented milk[J]. Modern Food Science and Technology,2021,37(11):34−42.

ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 Fermented milk[J]. Modern Food Science and Technology, 2021, 37(11): 34-42.

[25]

PENG L, ZHAO K, CHEN S, et al. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013[J]. Archives of Microbiology,2021,203:2795−2807. doi: 10.1007/s00203-021-02240-7

[26] 张志鸿, 许恒毅, 魏华. 基于PCR方法检测蜡样芽孢杆菌的研究进展[J]. 食品工业科技,2013,34(22):335−342. [ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry,2013,34(22):335−342.

ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry, 2013, 34(22): 335-342.

[27] 蔡淼, 郝晓娜, 罗天淇, 等. 植物乳杆菌YW11胞外多糖对酸乳加工特性的影响[J]. 食品科学,2021,42(14):39−45. [CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science,2021,42(14):39−45. doi: 10.7506/spkx1002-6630-20200511-115

CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science, 2021, 42(14): 39-45. doi: 10.7506/spkx1002-6630-20200511-115

[28]

WANG H, WANG C, WANG M, et al. Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture kefir mild 01[J]. Journal of Food Science,2017,82(11):2650−2658. doi: 10.1111/1750-3841.13935

[29]

ARNESEN L P, FAGERLUND A, GRANUM P E. From soil to gut: Bacillus cereus and its food poisoning toxins[J]. FEMS Microbiology Reviews,2008,32(4):579−606. doi: 10.1111/j.1574-6976.2008.00112.x

相关知识

“炒饭综合征”的幕后黑手——蜡样芽孢杆菌
山东微生物有机肥发酵剂地衣芽孢杆菌
一种产纤维素酶、果胶酶、单宁酶及植酸酶的植物乳植杆菌YYS
畅优125g植物乳杆菌益生菌发酵乳
低聚半乳糖对衰老肠道的多效作用
低聚半乳糖的作用
地衣芽孢杆菌活菌胶囊(整肠生)详细说明书
低聚半乳糖对肠道益生菌作用机理的研究
低聚半乳糖的作用营养价值
低聚果糖和低聚半乳糖的区别

网址: 低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善 https://m.trfsz.com/newsview780164.html